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Abstract - Many digital signal processing algorithms are based on mono-scale analysis. Since the reshuffling of any data value does 

not change the probability distribution, the sense of correlation or covariance in the data is lost, especially when dealing with self-affine 

time series. An alternative approach is to use poly-scale analysis. This paper describes two poly-scale algorithms: the length fractal 

dimension and variance fractal dimension and evaluates their accuracy and precision. First, we generate white Gaussian noise and 

fractal Brownian motion using the concepts of fractional Brownian motion and the discrete Fourier transform. Next, we evaluate the 

performance of these measures. Since many processes are nonstationary, we also present a stationarity-frame detection technique based 

on the One-Way ANOVA and Bartlett tests. Our results show that these poly-scale techniques can always be used as reliable tools for 

different purposes in self-affine data analysis. 

 

Keywords: Signal processing; poly-scale analysis; variance fractal dimension; length fractal dimension; stationarity 

frames. 

 

 

1. Introduction 
 Methods for digital signal processing (DSP) have evolved significantly in recent years due to the diverse applications 

of DSP in areas such as data transmission, speech and image recognition/translation, and biomedical applications [1]. 

Many of these methods treat the digital signals at a single-scale or mono-scale. Recently, multi-scale and poly-scale 

analyses have been gaining attention because they provide more insight into the internal structure of the data. However, to 

achieve good results, these emerging analyses require much attention to detail. One of the most applicable poly-scale 

methods is based on the concepts of single and multiple power laws in the form of complexity measures, including fractal 

dimensions, as many physical processes have the characteristics of fractals [2]. Fractals are complex objects that some 

parts of them replicate the structure of the whole. The typical examples of fractals are the Koch curve and snowflake, 

Sierpinski triangle, and Fibonacci spiral (self-similarity at point of convergence). Such self-similar, self-affine objects 

require moving from the integer-dimensional space to a fractional space. In recent years, this thought process has had 

significant advantages from both theoretical and practical points of view.  

 Variance and length fractal dimensions are two important poly-scale measures used in many data analysis areas [3] 

to [9]. These poly-scale methods and related algorithms were introduced and developed by Kinsner in 1994 [4]. Unlike a 

mono-scale analysis, a poly-scale analysis measures a signal at multiple scales (covers with volume elements, “vels” for 

short). It considers the measures from each scale cover simultaneously. If the time series is non-stationary, the analysis can 

be done within a moving stationarity frame to form a complexity measure trajectory. For example, the variance fractal 

dimension (VFD), Dσ, has been used in applications such as nonstationary speech segmentation [5]. Multiscale and poly-

scale analysis and synthesis using VFD in cognitive systems were introduced in [6]. Feature extraction of DNA sequences 

based on multifractal analysis was performed in [7]. Another important advantage of VFD analysis is that it is not sensitive 

to noise and can be applied in real-time streaming data [3]. Other applications include the detection of anomalies in (i) 

traffic analysis, specifically in the distributed denial of service (DDOS) attacks, and (ii) nonlinear hydraulic actuators used 

in heavy-duty machinery. 

 This paper presents such a poly-scale analysis and synthesis, emphasizing the accuracy and precision of the length 

and variance fractal dimensions, DL and Dσ, respectively. First, we study the transient duration of the random number 

generator to be sure that the generator transient does not affect our data. Next, we investigate two methods to synthesize 

two classes of fractional noise with known fractal properties. We further describe two statistical tests, the One-Way 

ANOVA and Bartlett tests, to determine the appropriate stationarity frame of the synthesized time series. We evaluate the 
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performance of the proposed complexity measures with 35 different vel sizes, using the technique described in [6], [8] and 

[9]. 

2. Fractional Noise Synthesis 
 Two classes of time series are synthesized for the required study: (i) a white uncorrelated Gaussian noise with the 

stochastic self-similarity fractal dimension        and (ii) a Brownian noise with        . The time series were 

generated using the following two methods: (a) the fast Fourier Transform (FFT) and (b) the covariance generator. 

 The FFT allows us to generate fractional noise through the concept of spectral exponent   in the frequency domain. 

One of the standard conventions is to present the spectral slope of the noise as directly proportional to the power of 

frequency. For a self-affine time series, the power spectral density (PSD) satisfies the following power-law relation 

                           
 

  
                                                                                                                        (1) 

It is more convenient to work with the amplitude spectrum density (ASD). Based on the well-known relation that 

ASD is the square root of the PSD, we manipulate the ASD instead of PSD to obtain the desired PSD slope. First, we need 

to synthesize Gaussian noise in the time domain and get the fast Fourier coefficient as [10] 

      
 

 
∑   
        

    
  

  (2) 

where      is the kth fast Fourier coefficient of Gaussian noise,      is the signal in the time domain, and   is the frame 

size. To generate the Brownian noise, we can take the first-order integral of the Gaussian noise, which is equivalent to 

        in the frequency domain. Now, we can generate the Brownian noise by taking the inverse fast Fourier transform 

as follows 

      ∑   
     

           
  

  (3) 

where      is the Brownian noise in the time domain. The fractional Brownian motion generator involves a continuous 

zero-mean Gaussian process          with covariance function [11] 

            
 

 
                            (4) 

is called fractional Brownian motion (FBM) with Hurst parameter        . It can be shown that in self-affine time 

series, the variance is related to the time increments according to the following power-law relation as 

                        (5) 

where   is a discrete sample of a time series sampled at time  . Taking the logarithm of both sides and simplifying allows 

us to extract the Hurst exponent 
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Evaluating the variance fractal dimension based on the Hurst exponent can be carried out using the following 

expression  

          (7) 

For a time series with a single independent variable     and         . Note that       corresponds to the 

Brownian motion whose       . 

 To perform a poly-scale analysis, we consider the displacement          at multiple scales and different frames 

produced by the time series     ]. 

Notice that we have selected this approach to generate fractional noise because it can produce signals of any 

complexity such as         and         using Eq. (4) and with        and       , respectively. Since only 

one algorithm is needed to produce the noise, the differences originating from different algorithm implementations are 

eliminated. 

 

3. Study of Generator Transients in a Short Time Series 
 In this section, we synthesize a strictly stationary Gaussian stochastic process (white noise) called TSw128k in the 

form of a time series     ] where    is the number of samples in the entire series. To generate the white Gaussian noise, 

we consider the Mersenne Twister generator with a seed of 1. The number of samples is     
        (or   ) with 
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             . In general, transients may occur on some generators, particularly those used in chaotic dynamical 

systems. Since transients are usually not discussed in various language implementations and numerical applications, very 

accurate  

experiments should address the problem by skipping the first NT samples. In order to determine if the generator has a 

transient, and how long it lasts, we generate the time series after skipping the following transient sequences 

    •       (skip no samples);  

    •         (skip the first 128 samples);  

    •         (skip the first 256 samples);  

    •         (skip the first 512 samples);  

   •          (skip the first 1024 samples).  

 Now, we plot the first        samples from each instance of the time series with     to     in Fig. 1. To achieve 

a better visualization, the amplitudes in samples are shifted by five units after    . As we can see, there is no transient in 

this pseudorandom data generator. Then the used generator skips the transient samples automatically. Table 1 compares 

some descriptive statistical properties for all the entire Gaussian test sequences TSw4K1 to TSw4K5.  

 
Table 1: Statistical properties for         to       .  

  Statistical 

Moment 
                                         Normalized 

Range 

 Maximum  3.4562 3.4562 3.4562 3.4562 3.4562 0 

 Minimum  -3.0652 -3.0652 -3.1234 -3.1234 -3.1234 0.0186 

 Range  6.5214   6.5214  6.5796   6.5796   6.5796 0.0186 

 Sum  34.1948   35.4395   -2.9251   8.2154   55.2310 1.0530 

 Mean  0.0083   0.0087   -0.0007   0.0020   0.0135 1.0519 

 Median  0.0226   0.0193   0.0026   0.0001   0.0211 0.9956 

 Mode  -3.0652   -3.0652  -3.1234   -3.1234   -3.1234 0.0186 

 Sample Variance  1.0224   1.0216   1.0275   1.0218   1.0184 0.0089 

 Standard 

Deviation  

1.0111   1.0107   1.0136   1.0109   1.0092 0.0043 

 Skewness  0.0214   0.0197   0.0301   0.0217   0.0229 0.3455 

 Kurtosis  2.9935   2.9985   3.0016   2.9985   2.9368 0.0216 

 Standard Error                                                              0.0044 

 
We define the normalized range for variation of each descriptive statistics TSw4K1 to TSw4K5 as  

                  
                       

           
 (8) 

where              The maximum values for all TSw4Ki are the same, while minimum values slightly changed. Based on 

Eq. (8) the values of sum, mean, and median have changed more than other statistics.  
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Fig. 1. The first        samples     to    . 

4. Accuracy and Precision of Complexity Measures 

The white Gaussian noise can be generated in many ways. First, we can generate it using pseudorandom generators in 

Matlab with              . Another method is based on Eq. (4) with    . Here, we generate a white Gaussian noise 

called TSw128K with     
   (or              ) using the Mersenne Twister generator with a seed of 1. Before 

studying the accuracy and precision of the length fractal dimension, we explain the stationarity method that we used. 

   
4.1. Stationarity 

 To have a valid analysis, either the entire signal recording (epoch),   , should be stationary, or we should find a 

frame size in which that signal is stationary. Signal processing often requires weak-sense stationarity (WSS). A stochastic 

process       , is WSS if mean and autocovariance are constant and do not change over time. In other words  

               (9) 

                                       (10) 

the second condition implies that the autocovariance is independent of    . Note that this also shows the variance of the 

process is constant over time. 

 To check for the stationarity, there are several methods that we can use such as the Augmented Dickey-Fuller test, 

Haar wavelet-based variance change, and Kwiatkowski-Phillips Schmidt-Shin test. However, in this work, we utilize the 

One-Way ANOVA test for stationarity in mean and Bartlett’s test to establish the stationarity for variance. 

 The One-Way ANOVA parametric test is a tool to check whether there is statistical evidence that the associated 

population means are significantly different in two or more independent groups. This test computes the ratio of between-

group variation to within-group variation. We denote by SSR the variation between groups as  

     ∑   
       ̅   ̅ 

  (11) 

where  ̅  is the sample mean of the group  , and  ̅ is the overall mean of the sample. The variation within groups or SSE is 

defined as  

     ∑   
   ∑   

         ̅  
  (12) 

We also use SST to indicate the total sum of squares as  

     ∑   
   ∑   

         ̅ 
  (13) 

then we have the following relation  

             (14) 

Now, the test statistic is defined as  

   
        

        
 (15) 
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where   is the number of groups, and   is the total number of observations. If this value is significantly higher than the 

critical value in the table of  -distribution with           degrees of freedom and significance levels     , then you 

can reject the null hypothesis that the means among groups are significantly different from each other. 

Bartlett’s test is also used to determine if multiple samples are from populations with equal variances. The test statistic is  

   
          

   ∑   
              

  

                ∑   
                    

 (16) 

where   
  is the variance of the  the group,   is the total sample size,    is the sample size of the  the group,   is the 

number of groups, and   
  is the pooled variance. The pooled variance is defined as  

   
  ∑   

   
        

 

     
 (17) 

 The test statistic has a chi-square distribution with     degrees of freedom. If the  -value for the test is smaller 

than the significance level     , then the test rejects the null hypothesis that all group means are equal and concludes that 

at least one of the group variances is different from the others. In our investigation, the frames of the whole epoch are 

considered as the independent populations that should be evaluated using these two statistical tests.  
 
 
4.2. Length Fractal Dimension for White Gaussian Noise  

We calculate the length fractal dimension,   , from the TSw128K using the batch processing described in [8]. First, 

using the method described in subsection 4.1, we show that the TSw128K is stationary. For the frame size         the 

 -values for the mean is        and for variance is         Since  -values are more than     , they indicate that One-

Way ANOVA and Bartlett tests do not reject the null hypothesis that the mean and variance are equal. Then the frame sizes 

are stationary.  

Now, we describe the process of computing the length fractal dimension, DL. The following covers have been 

considered, with volume elements (vels) of unequal sizes in order to generate a large number of measures with a relatively 

equal distribution in the log-log values 

      
   

              (18) 

where    , is the floor function. It is seen that the above 35 vel sizes cover the TSw128K quite well. The last vel size is 

1024 samples apart and covers the TSW128K 128 times. This is four times more than the statistical 32 minimum number 

of covers. For each index     to 35 and the corresponding vel size   , we compute the length of each subsequence as  

                                 (19) 

where   is the subsequence interval,   is the element in the subsequence, and   is the subsequence length. The total for 

each subsequence can be taken as follows 

      ∑  
  
                           (20) 

where    is the number of vels of size    in the subsequences of differences and is defined as  

     
     

  
  (21) 

and     is again the floor function and    is the stationary frame size. Here, we consider the        to obtain length the 

fractal dimension    for the time series TSw128K. Then, we must take the average length,        from all the 

subsequences as follows  

        
 

  
∑  
  
        (22) 

We calculate the logarithms of the        measure for the point on the doubly-logarithmic or log-log plot [x-axis, y-axis]  

                         (23) 

For all the 35 points, we fit a line, using a robust linear regression method called iteratively reweighted least squares 

(IRLS) [12]. Next, we calculate the slope of the line. Then, the fractal dimension for the TSw128K process is as follows  

         (24) 

where    is the slope of the line in the log-log plot [x-axis, y-axis]. The process is repeated 100 times and resulted in 
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          with the standard deviation                Figure 2 shows the fitted line for the 35 points in the log-

log plot.  

 
Fig. 2. The log–log plot for calculating the length dimension,     of TSw128K. 

4.3. Length and Variance Fractal Dimension of Brownian Noise 

 Let us focus on the Brownian self-affine time series called TSb128K, whose statistical self-similarity fractal 

dimension is       . It is another simplest form of a self-affine signal which is suitable for studying the accuracy and 

precision of the poly-scale complexity measures    and   . Here, we synthesize the time series TSb128K with     
   

(or 128  = 13107210 ) samples. To do this, we use the following generator  

       (25) 

                             (26) 

where      is the Gaussian process with        as discussed in previous sections. Note that we skip    samples to 

minimize any possible impact of a transient. Figure 3 shows the generated Brownian noise using recursive sequence (25)-

(26). We used the method described in Subsection 4.2 to calculate the length fractal dimension for Brownian noise 

TSb128K. We performed the algorithm 100 times and achieved the length fractal dimension average           with 

standard deviation          for these iterations. Figure 4 shows the fitted line for the 35 points in the log-log plot. 

We can also define the variance fractal dimension, Dσ, using the method described in [9]. We compute the variance 

of each subsequence      for the corresponding vel size    in Eq. (18) as  

      
 

    
 ∑  
  
                          

  (27) 

  
 

  
 ∑  
  
                         

   

where       and               If we take the average of the subsequences as  

        
 

  
∑  
  
        (28) 

for each scale    we have the following pairs  

                         (29) 

 Now, we use IRLS as a robust linear regression to compute the slope of the line in each frame. Then, the variance 

fractal dimension can be obtained as follows  

  

          
 

 
   (30) 
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Fig. 3. Brownian self-affine time series TSb128K with     

   samples. 
 

 

 
Fig. 4. The log–log plot for calculating the length fractal dimension,     of TSb128K. 

 

The average value of the variance fractal dimension after 100 times iteration is           with standard 

deviation           In Fig. 5, we can see the obtained fitted line using IRLS for the 35 points in the log-log 

plot. It must be stressed that in the calculation of variance and length fractal dimension we should eliminate 

outliers and saturation points from the log-log plot values. The IRLS can mitigate the influence of outliers, 

otherwise, errors might be significant. In addition, we can only apply a linear regression when the pairs form a 

line. If the points do not form a line, the power-law may vary over the range considered, thus implying a 

multifractal. The log-log plots for calculating variance and length fractal dimension in Figs. 4 and 5 show that 

the 35 points form a straight line as we expected.  
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Fig. 5. The log–log plot for calculating the variance fractal dimension, Dσ, of TSb128K. 

 

 

5. Conclusion 
 This paper presents an analysis of the accuracy and precision of two classes of complexity measures called length 

fractal dimension, DL, and variance fractal dimension, Dσ. Since the fractal complexity of the white Gaussian and 

Brownian noises are known, the two processes are synthesized as time series called TSw128K and TSb128K, respectively, 

to investigate the performance of these DL and Dσ algorithms. While there are many techniques suitable to synthesize 

fractional self-affine noise with a specified complexity measure, the discrete-Fourier transform is a technique that could be 

advantageous from the practical and theoretical points of view for generating different classes of fractional noise for testing 

and experimentation. This single technique of synthesizing a fractional noise can be used not only to verify the accuracy of 

poly-scale measures but also to evaluate signals contaminated by a known fractional noise. 

 Stationarity is one of the critical issues in signal processing. Thus, this paper further applies a method based on the 

One-Way ANONA and Bartlett tests that evaluate whether the variance and means of two or multiple samples are 

noticeably different. Using this technique one can identify an appropriate stationary frame size, even when the entire time 

series is not stationary, and can perform the poly-scale analysis of data of interest within the stationarity frame.  
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