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Abstract - Accurate estimation of the total body surface area (TBSA) and its percentage is critical for efficient burn patient care. In this 

paper, we present a machine learning-based approach for segmenting burnt regions and healthy skin areas from the burn image dataset 

we collected, addressing challenges related to limited dataset size and chaotic hospital bасkground. Our method utilizes а classification 

tree model trained on features extracted from the HSV color space, normalized RGВ components, and Chroma values, then compare 

with ensemble trees (Random Forest and XGBoost). The results demonstrate robust performance in ассurаtely segmenting burn regions 

and healthy skin, outperforming existing methodologies where reасh 93.94% accuracy in healthy skin segmentation and 94.59% in burnt 

region segmentation. Additionally, we identify the need tо augment the dataset with more diverse skin examples in future work to improve 

sensitivity in detecting healthy skin. Our аррroаch provides а valuable contribution to the accurate determination of TBSА percentage, 

thereby streamlining the assessment and treatment process for burn patients. 
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1. Introduction 
The main cause of death for patients who get burned, accounting for 58% of fatalities within the first 72 hours, is the 

initial 'burn shock' which necessitates fluid resuscitation to support hemodynamics and perfuse end organs[1, 2]. The larger 

the burn, the more intense this process becomes. An accurate total body surface of a burn is acute in-patient care. At this 

time, given the lack of experience in burn injuries by most health care providers and first responders outside of the burn 

surgeon, inaccurate estimations lead to over-, under-, and unnecessary resuscitation of patients. Lack of training and 

experience has led to first responders giving an inaccurate estimation of the total body surface area (TBSA) and TBSA 

percentage[3].   

To determine the TBSA and its percentage accurately and reduce the impact of chaotic background in the hospital when 

measuring the severity of burn injuries, separating the background, burned skin, and healthy skin region is essential. Machine 

learning methods are proven effective at image segmentation tasks. For instance, the deep learning-based end-to-end 

framework was applied to segment the burnt skin area in the whole images at reached the IOU of 0.8467 [4]. Cr-

transformation, Luv-transformation, and fuzzy c-means clustering were used for segmenting the burnt region and 

discriminating between healthy skin and burned skin and obtained a sensitivity of 0.84 [5]. 

In this study, we gather a burn image dataset from a burn center and manually annotate healthy and burned skin at the 

pixel level. We select features such as HSV color space, normalized RGB components, and chroma values. Finally, we train 

a series of classification tree[6] including single tree, Random Forest [7] and XGBoost [8]  with the extracted feature vectors 

to segment skin and burned regions, then evaluate and compare our models. Our proposed method successfully mitigates the 

constraints associated with limited dataset size and chaotic background conditions, culminating in strong performance 

metrics. This attests to the effectiveness of our approach in accurately segmenting burn-affected regions and distinguishing 

healthy skin areas. 

 

2. Method 
2.1. Data Collection 

In this paper, the burn injury images were collected from 8 patients (6 males, 2 females) with varying ages (29-76 years 

old) and ethnicities (3 White, 5 Latinos) in collaboration with an expert at Texas Tech University Health and Science Center 

(TTUHSC), following IRB guidelines. The images captured burned body parts such as the face, feet, and abdomen of the 
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patients on their first day of admission to the hospital. A total of 25 images were obtained, including 9 from patients with 

partial-thickness burns and 16 from patients with full-thickness burns. 

 
2.2. Image Pre-processing 

In the pre-processing stage, we manually label the original dataset at pixel level with 2 steps: 

Step 1: We label the pixels belonging to healthy human skin for distinguishing from the background to obtain the total 

body surface area of the human and reduce the impact of chaotic background for further work. The original image is shown 

in Fig. 1a, and the labelled area is marked as the blue region shown in Fig. 1b. 

Step 2: We label the pixels associated with burned area on patients’ bodies for determining the TBSA, the labeled area 

is marked as the yellow region shown in Fig. 1b. 

Prior to training the classification tree, we implement the Normalization-Contrast Limited Adaptive Histogram 

Equalization (N-CLAHE) [9] to minimize the effects of different qualities such as intensity and lightness of the original 

images. The image processed by N-CLAHE is shown in Fig. 1c.  

   
(a) (b) (c) 

Fig. 1: (a) Original image from burn patient. (b) Labelled image with total human skin area (healthy + burned). (c) Labelled image with 

the total burned skin area. (c) Pre-processed image after N-CLAHE algorithm 

 

2.3. Feature Extraction 
To determine which pixels are related to the human skin and burnt region, we select 8 color-related features which 

include pixel values on HSV (Hue, Saturation, and Value) color space, two components of the normalized RGB color space 

(r-g), and chroma values as shown in Eq. (1): 

[𝑝𝑖𝑥𝑒𝑙𝐻, 𝑝𝑖𝑥𝑒𝑙𝑆, 𝑝𝑖𝑐𝑒𝑙𝑉, 𝑟, 𝑔, 𝑐ℎ𝑟𝑜𝑚𝑎] (1) 

where 𝑝𝑖𝑥𝑒𝑙𝐻, 𝑝𝑖𝑥𝑒𝑙𝑆, and 𝑝𝑖𝑐𝑒𝑙𝑉 represent the pixel values in HSV color space [10] which is more focused on the 

nuances of how humans perceive color; r, g are the components of the normalized r-g color plane which has been proven 

effective to reduce the dependence of luminance and recognize different people's skin colors [11]. The normalized 

components are calculated by following Eqs. (2)-(3): 

𝑟 =
𝑅

𝑅 + 𝐵 + 𝐺
 (2) 

𝑔 =
𝐺

𝑅 + 𝐵 + 𝐺
 (3) 

where R, G, B values are the pixel values at R, G, B channels of the images. 

Chroma values are hired for determining if the pixel is in the burn region by colorfulness[12]. 

 
2.4. Model training 

Classification tree is a type of decision trees which is a supervised learning algorithm for binary classification tasks [6]. 

The classification tree model is a hierarchical tree structure, wherein every decision node signifies a feature in our proposed 

feature vector, and every branch represents a decision rule founded on the value of the corresponding feature and terminates 

at a leaf node that corresponds to the class label. And the classification tree doesn't change to the input feature due to it 

doesn't consider multiple combined factors with varying importance at the same time [13]. We divided the dataset into 70% 

training set and 30% testing set randomly and trained the classification tree with training set and trained two different 

classification trees for burn region and healthy skin region separately. We applied the one-vs-all [14]method for each 

classification tree, for example, we treated the burn region as one class while merging the healthy skin and background 

regions as the other class for burn region segmentation, and vice versa for the healthy skin region classification. 
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In this paper, we also compare single classification tree with two commonly used ensemble tree-based techniques: 

Random Forest and XGBoost where Random Forest uses bagging to combine multiple decision trees to make predictions, 

while XGBoost applies gradient boosting to iteratively improve the model's performance. The number of trees is set to 50 

for both algorithms in our experiments. 
  

3. Result 
        We evaluate our proposed method with performance metrics including 1) sensitivity, 2) specificity, 3) precision, 4) 

accuracy, 5) F-score, and 6) time consumption. In this paper, sensitivity assesses the ability of the model to correctly detect 

the positive regions (i.e., healthy skin or burnt skin) in a testing image, and specificity assesses how accurately the model 

identifies the negative regions (i.e., healthy skin region and background are negative regions for burnt region) in a testing 

image, precision evaluates the model's accuracy in identifying positive regions and reducing falsely identifying negative 

regions as positive, accuracy measures the overall correctness of the model, F-score is a composite metric that combines both 

precision and sensitivity used for evaluating the overall performance of the model, and time consumption measures the time 

costing during training phase. These performance metrics are shown in Table 1: 
Table 1: Performance metrics of decision trees when segmenting healthy skin and burnt region. 

Algorithm Recognized region Sensitivity Specificity Precision Accuracy F-score  Training time 

consumption 

Classification tree Healthy skin region 76.33% 96.94% 80.95% 93.94% 78.57% 186.78s 

Burnt region 91.44% 96.03% 91.28% 94.59% 96.07% 258.00s 

Random forest Healthy skin region 72.09% 96.44% 77.50% 92.90% 74.70% 6433.23 

Burnt region 89.24% 95.34% 89.69% 93.44% 89.47% 6259.90s 

XGBoost Healthy skin region 72.76% 96.87% 79.83% 93.36% 76.13% 127.67s 

Burnt region 90.38% 95.64% 90.39% 94.00% 90.39% 125.43s 

 

After testing our trained model with the testing set, we present the single classification tree results of our predictions in 

Fig. 2. Specifically, Fig. 2a presents the original images from the testing set; Fig. 2b exhibits the ground truth mask which is 

generated from labels where the white section represents burnt region, black section represents healthy skin region, and grey 

section represents background; Fig. 2c demonstrates the recognition result of healthy skin region; and Fig. 2d illustrates the 

recognition result of the burnt region. 

   
(a) (b) 

  
(c) (d) 

Fig. 2: Prediction results of our proposed method. (a) Original image from testing set. (b) The ground truth mask generated from labels 

(white: burnt region, black: healthy skin, grey: background). (c) Predicted result of healthy skin region. (c) Predicted result of burnt 

region. 
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4. Discussion 
From Table 1, it is evident that our proposed method effectively addresses the constraints imposed by limited dataset 

size and chaotic backgrounds, ultimately achieving commendable performance metrics in the process. It outperforms the 

approaches described in [4] and [5], indicating a superior ability to discern burn-affected skin within the provided images 

where the models achieve the least accuracies of 92.90% on healthy skin region segmentation and 93.44% on burnt region 

segmentation. However, it is worth noting that the compared ensemble methods, Random Forest and XGBoost, have higher 

complexity and may not always be necessary for relatively simple datasets or features like the one used in this study. 

Traditional classification trees may be sufficient and more straightforward in such cases. Surprisingly, XGBoost shows 

higher efficiency during training by training 50 trees in the shortest time compared to the other models. A fly in the ointment 

is it exhibits a lower sensitivity in comparison to specificity when detecting healthy skin. This discrepancy may be attributed 

to an insufficient representation of diverse human skin tones within the dataset. In our future work, we will augment the 

dataset by incorporating a more comprehensive array of skin examples, thereby ensuring a more balanced performance in 

accurately detecting both background and skin regions, and transition to take whole-body pictures for estimation of the total 

body surface area. 

By observing Fig. 2c and 2d, and the annotated mask presented in Fig. 2b, we found that the classification trees are adept 

at accurately identifying and eliminating the intricate and disorderly background in the hospital environment. Furthermore, 

Fig. 2d demonstrates the efficacy of our proposed methodology in segmenting the burn region from the patient's body, which 

can subsequently be utilized for the assessment of the Total Body Surface Area (TBSA). By determining the TBSA in 

conjunction with the healthy skin region, it is possible to facilitate a more streamlined calculation of the TBSA percentage. 

 

References 
[1]  K. J. Zuo, A. Medina, and E. E. Tredget, "Important developments in burn care," Plastic and reconstructive surgery, 

vol. 139, no. 1, pp. 120e-138e, 2017. 

[2]  T. J. Schaefer and O. N. Lopez, "Burn resuscitation and management," in StatPearls [Internet]: StatPearls Publishing, 

2022. 

[3]  Q. E. Chan, F. Barzi, L. Cheney, J. G. Harvey, and A. J. Holland, "Burn size estimation in children: still a problem," 

Emergency Medicine Australasia, vol. 24, no. 2, pp. 181-186, 2012. 

[4]  H. Liu, K. Yue, S. Cheng, W. Li, and Z. Fu, "A framework for automatic burn image segmentation and burn depth 

diagnosis using deep learning," Computational and Mathematical Methods in Medicine, vol. 2021, 2021.  

[5]  K. Wantanajittikul, S. Auephanwiriyakul, N. Theera-Umpon, and T. Koanantakool, "Automatic segmentation and 

degree identification in burn color images," in The 4th 2011 Biomedical Engineering International Conference, 2012: 

IEEE, pp. 169-173. 

[6]   L. Breiman, Classification and regression trees. Routledge, 2017. 

[7]   L. Breiman, "Random forests," Machine learning, vol. 45, pp. 5-32, 2001. 

[8]   T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd 

international conference on knowledge discovery and data mining, 2016, pp. 785-794. 
[9]   K. Koonsanit, S. Thongvigitmanee, N. Pongnapang, and P. Thajchayapong, "Image enhancement on digital x-ray images 

using N-CLAHE," in 2017 10th Biomedical engineering international conference (BMEICON), 2017: IEEE, pp. 1-4. 

[10] K. Sobottka and I. Pitas, "Face localization and facial feature extraction based on shape and color information," in 

Proceedings of 3rd IEEE international conference on image processing, 1996, vol. 3: IEEE, pp. 483-486. 

[11] J.-G. Wang and E. Sung, "Frontal-view face detection and facial feature extraction using color and morphological 

operations," Pattern recognition letters, vol. 20, no. 10, pp. 1053-1068, 1999. 

[12] D. Yadav, A. Sharma, M. Singh, and A. Goyal, "Feature extraction based machine learning for human burn diagnosis 

from burn images," IEEE journal of translational engineering in health and medicine, vol. 7, pp. 1-7, 2019. 

[13] C. Kingsford and S. L. Salzberg, "What are decision trees?," Nature biotechnology, vol. 26, no. 9, pp. 1011-1013, 2008. 

[14] R. Rifkin and A. Klautau, "In defense of one-vs-all classification," The Journal of Machine Learning Research, vol. 5, 

pp. 101-141, 2004. 

 


