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Abstract - Electroencephalographic (EEG) Evoked Potentials (EPs) have gained significant attention as promising tools for non-

invasive investigation of a wide array of neurological and neuropsychiatric conditions. Progress in this area relies on the capacity to 

identify and automatically extract patterns of EPs that are reproducible at the group level. The present study explores the application of 

Group Task-Related Component Analysis (gTRCA), an innovative multivariate signal decomposition technique, to the characterization 

and classification of auditory evoked potentials. Using a publicly available dataset of auditory oddball EPs, we employed gTRCA to 

extract reproducible components of EEG recordings from 40 healthy subjects exposed to standard and deviant auditory stimuli in a 

mismatch negativity protocol. The extracted temporal patterns were then utilized as templates for classifying auditory oddball EPs in the 

standard or deviant classes based on their optimal alignment with the primary gTRCA components triggered by the respective type of 

stimulation. Our results confirmed that gTRCA was able to reliably extract significantly reproducible components (p<0.001) of auditory 

EPs with spatiotemporal attributes that were coherent with the type of stimulation.  Furthermore, the extracted temporal patterns were 

shown to be robust and sufficiently distinct to be used in the classification of auditory EPs, achieving median accuracy of 90%. Our 

findings posit gTRCA as a powerful tool for optimizing scientific and clinical studies exploring novel markers for various clinical 

conditions associated with alterations in EEG evoked potentials. 

Keywords: EEG, Auditory Oddball Evoked Potentials, Mismatch Negativity, gTRCA, Dimensionality Reduction, Pattern 

Recognition 

 

 
1 1. INTRODUCTION 

Electroencephalographic (EEG) evoked potentials (EPs) are among the most widely used tools in the field of 

neuroscience and have been applied in the non-invasive investigation of various clinical conditions [1]. Abnormalities in the 

characteristics of evoked components elicited by different types of stimuli appear as potential candidates for supporting the 

identification of several diagnostically challenging pathologies such as dementia and neurodegenerative diseases [2, 3], 

depression [4], schizophrenia [5], and autism spectrum disorder [6]. However, the development of such diagnostic tools 

hinges on the ability to extract patterns from evoked signals that are reproducible across stimuli and individuals and that can 

be employed in the automatic classification of EPs in different conditions of interest.  

Recent advances have been made in multivariate analysis methodologies with the intention of optimizing the detection 

of reproducible EEG components at the group level [7] - [9]. Among these techniques, the Group Task-Related Component 

Analysis (gTRCA) stands out for having two characteristics that make it particularly interesting for applications in EPs: 

gTRCA identifies components that are simultaneously reproducible across both dimensions of interest (stimuli and subjects) 

and is flexible enough to accommodate spatial variations between subjects, making it ideal for group-level analyses of EEG 

recordings. Despite its potential, gTRCA has been tested only on steady-state EPs [10], leaving its application to other types 

of EPs still unexplored.  

Among the various types of evoked potentials, auditory oddball EPs recorded in mismatch negativity (MMN) protocols 

have recently attracted significant interest, shedding light on numerous neural mechanisms underpinning auditory processing, 

plasticity, and pre-attentional processes [11, 12]. MMN protocols entail the presentation of a deviant auditory stimulus, 

distinct from other more frequent or standard stimuli, and elicit a characteristic response that can be captured in EEG 

recordings. This stimulus-induced response manifests as a depolarization in the fronto-central and central EEG electrodes, 

with peak activity typically observed within a time frame of 150 to 250 ms after the stimuli [11]. A notable advantage of 

these protocols is their broad applicability in examining diverse neuropathologies and clinical conditions where alterations 

in auditory processing are significant [13, 14], such as early stage psychosis [15], bipolar disorder [16], ageing [17], 
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functional outcomes in patients with traumatic brain injury [18], autism [19], and even as a prospective predictor of mental 

health issues in children [20].  

In the present study we explore the hypothesis that gTRCA can be applied to auditory oddball EPs in healthy subjects 

to effectively extract temporal and spatial patterns that are reproducible at the group level and that can be used to 

automatically discriminate between the two types of stimuli presented in the MMN protocol.   
 

2  2. MATERIAL AND METHODS 
2.1 2.1 Data and Preprocessing 

The current investigation employed a publicly available database furnished by Kappenman and collaborators [21], which 

includes pre-processed and segmented EEG recordings from 40 neurotypical, healthy subjects (25 females; 15 males; ages 

spanning from 18 to 30) subjected to a passive auditory oddball paradigm as a way to assess mismatch negativity. Within 

this paradigm, standard (80 dB, p=0.8) and deviant (70 dB, p=0.2) auditory stimuli were presented via speakers while 

participants watched a silent video [21]. Each participant received 800 stimuli in the standard condition and 200 stimuli in 

the deviant condition. 

For the analysis performed in this study, we extracted the pre-processed EEG signals of all 40 subjects. As described in 

the ERP Core dataset, EEG data were acquired at a sampling rate of 1024Hz using a Biosemi ActiveTwo system with 30 

channels (28 EEG + 2 EOG) positioned in compliance with the International 10/20 System. The pre-processed signals used 

in this study had previously undergone the following pre-processing steps [21]: anti-aliasing filter and downsampling to 256 

Hz, re-referencing to the average of P9 and P10, DC offset removal, artifact removal via Independent Component Analysis 

and visual inspection, segmentation in epochs (trials) from -200ms to 800ms relative to the stimulus onset, and baseline 

correction. Finally signals were low-pass filtered with a 20 Hz cut-off. As result of the preprocessing, evoked potentials were 

constructed with an average number of 534.95 ± 59.39 trials in response to the standard stimuli and 183.18 ± 21.14 trials in 

response to the deviant stimulus. Figure 1 provides a visual representation of the dataset, showing the grand average 

potentials (across all subjects) under each condition (standard and deviant). 

 
3 2.2 METHODS 

In this section, we describe the gTRCA approach used to extract reproducible components from evoked potentials [10], 

as well as the procedure employed to classify EPs by projecting them on the first gTRCA component of each group. All 

analyses delineated herein were conducted utilizing Python, in conjunction with the MNE library [22, 23]. The code used in 

this study is publicly available at GitHub [24]. 

 
Figure 1: Grand average of EEG evoked responses for (A) standard auditory stimuli and (B) deviant stimuli across all 40 

participants. The heatmaps display the average time-series across all trials and subjects for each EEG channel. The 

https://www.zotero.org/google-docs/?287AO5
https://www.zotero.org/google-docs/?VU1lWR
https://www.zotero.org/google-docs/?Kx9ITy
https://www.zotero.org/google-docs/?O1yrO1
https://www.zotero.org/google-docs/?0a1NX7
https://www.zotero.org/google-docs/?svQwbQ
https://www.zotero.org/google-docs/?7Da7zD
https://www.zotero.org/google-docs/?IE7VfR
https://www.zotero.org/google-docs/?l9Aj5n


 

ICBES 161-3 

curves beneath each image display the associated global mean field power (GMFP), calculated as the voltage root mean 
square across all channels. 

 

 
3.1.1 2.2.1 Group Task-Related Component Analysis 

Let an EEG epoch recorded in individual α (α = 1...A) be represented by the matrix 𝑋𝛼
 𝑘 ∈ 𝑅𝑛 × 𝜏, where k 

denotes the epoch or trial (k = 1...K), n the total number of EEG channels, and τ the epoch length (number of 

samples). Following Tanaka, in this section we operate under the assumption that n, τ, and K are consistent across 

subjects, but this restriction is assumed only for the sake of notational simplicity and can be disregarded in real 

applications [10].  

The method developed by Tanaka for steady-state potentials starts from continuous EEG recordings that are 

used to calculate the global EEG covariance matrix, 𝑄  [10]. However, artifact-free continuous recordings are 

typically not available in EP protocols, as various artifact removal strategies are usually applied to the already 

segmented epochs. For this reason, we estimated the global EEG covariance from matrices 𝑋𝛼 ∈ 𝑅𝑛 × 𝑘𝜏 with 

preprocessed trials of individual 𝛼 concatenated along the temporal dimension. In these matrices, EEG channels 

were normalized to have zero mean and unit standard deviation. For each individual, a covariance matrix 𝑄𝛼
  was 

then calculated as  

𝑄𝛼
 =

1

𝑇
𝑋𝛼𝑋𝛼

⊤ ∈ 𝑅𝑛 × 𝑛. (1) 

 

The total covariance of the group 𝑄 ∈ 𝑅𝑛𝐴 × 𝑛𝐴 was then constructed as the block-diagonal matrix having 

𝑄𝛼
  (α = 1... A) as its submatrices.  

The methodology of the gTRCA is grounded on the covariance matrix 𝑄 and in a matrix 𝑆 ∈ 𝑅𝑛𝐴 ×𝑛𝐴  

constructed as follows: 

𝑆𝛼,𝛼 =
1

(𝐾 − 1)𝐾𝜏
∑

𝐾

𝑘,𝑙=1; 𝑘≠𝑙

𝑋𝛼
(𝑘)

𝑋𝛼
(𝑙)⊤

∈ 𝑅𝑛 × 𝑛 (2) 

𝑆𝛼,𝛽 (𝛼≠𝛽) =
1

𝐾2𝜏
∑

𝐾

𝑘,𝑙=1

𝑋𝛼
(𝑘)

𝑋𝛽
(𝑙)⊤

∈ 𝑅𝑛 × 𝑛 (3) 

The main diagonal of 𝑆 (Eq. 2) quantifies the intrasubject reproducibility (average correlation across trials 

within each subject) and the off-diagonal elements (Eq. 3) measures the intersubject reproducibility (correlation 

across trials of different subjects). The main goal of gTRCA is to find spatial filters 𝑤𝛼 that maximize 𝑆 under the 

constraint of fixed EEG covariance, which result in components maximally reproducible both across trials and 

subjects. This problem can be formulated as a Rayleigh-Ritz eigenvalue problem, with solution  𝑤 ∈ 𝑅𝑛𝐴×1 given 

by 

𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥(
𝑤⊤𝑆𝑤

𝑤⊤𝑄𝑤
), (4) 

where 𝑤 is formed by the column-wise concatenation of the individual spatial filters 𝑤𝛼. 

The resulting eigenvectors 𝑤 are subsequently sorted by their associated eigenvalues (λ), which measures 

the total strength of the component’s reproducibility across trials and subjects. The correspondent gTRCA 

components 𝑦𝛼
 (𝑘)

 ∈ 𝑅1 × 𝜏 are obtained by filtering the EEG with 𝑤𝛼, i.e., 𝑦𝛼
 (𝑘)

= 𝑤𝛼
⊤𝑋𝛼

 (𝑘)
. Finally, the spatial 

maps  𝑚𝛼 ∈ 𝑅𝑛 × 1 associated with each component are calculated as 𝑚𝛼 = 𝑄𝛼𝑤𝛼 [10]. gTRCA components were 

normalized with zero mean and unit variance. 
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We tested the reproducibility of gTRCA components by comparing their eigenvalues to a distribution 

derived from surrogate data. This data was generated by randomly shifting trials along the temporal dimension 

across all channels and individuals [25, 26]. We created 1000 surrogates and components were considered 

significantly reproducible if they achieved a statistical level of p<0.01. 

3.1.2  

3.1.3 2.2.2 Classification of Evoked Potentials with gTRCA 

To assess the capacity of gTRCA in classifying auditory evoked potentials, we extracted the first component 

of each stimulus type from a subset of individuals, which served as the training data for the classifier. The evoked 

potentials of the excluded individuals, designated as the test data, were then projected onto the gTRCA components 

using a spatial filter 𝑤𝐴+1. This filter was derived from the weighted sum of the filters {𝑤𝛼} originating from the 

individuals in the training group (𝛼 =  1, . . . , 𝐴) as follows:  

𝑤𝐴+1 =
1

2𝐴𝜁
𝑄𝐴+1

 −1 𝑈𝐴+1 ∑𝐴
𝛼=1 𝑈𝛼

⊤𝑤𝛼, (5) 

where 𝜁 corresponds to the Lagrange multiplier, 𝐴 + 1 corresponds to an individual in the test group with 

covariance matrix 𝑄𝐴+1
  and  𝑈 ∈ 𝑅𝑛 × 𝜏 corresponds to the EPs of the individuals of the training (𝑈𝛼

 ) and test 

(𝑈𝐴+1
 ) datasets. The parameter 𝜁 was fixed by normalizing the projected evoked potential 𝑦𝐴+1 of the test subjects 

to unit variance, where  𝑦𝐴+1 = 𝑤𝐴+1
⊤ 𝑈𝐴+1. 

The projected evoked potentials were compared with the corresponding mean gTRCA components derived 

from the training dataset for each condition. EPs from the test data were subsequently classified as either resulting 

from standard or deviant stimuli, depending on which corresponding component best fitted the projected EP. This 

fit was estimated by calculating the root mean square error (RMSE) between the two time series within the window 

of interest (150-250ms). The procedure was repeated 500 times, with individuals being randomly assigned to the 

training and test groups each time. The median rates of true positives for detecting the deviant condition, true 

negatives (for detecting the standard condition) and overall classifier accuracy were calculated across all 

repetitions.   

 

4 3. RESULTS AND DISCUSSION 

The application of Group Task Related Component Analysis to auditory oddball evoked potentials yielded 

two significant components for both experimental conditions (p < 0.001). In this study we concentrated our 

analysis on the first gTRCA component of each group, which are displayed in Figure 2. 
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Fig. 2: Spatiotemporal characteristics of the first gTRCA component in a passive auditory oddball protocol. Panel (A) 

presents the temporal series of the first gTRCA component in response to standard (blue) and deviant (orange) auditory 
stimuli. The solid lines depict averages across subjects, with the shaded regions representing 1.5 standard deviations 

above and below the respective means. Panel (B) exhibits the average topographic distributions of the gTRCA scalp maps 
for each condition (standard on the left and deviant on the right). Panels (C) and (D) display the distributions of correlations 

across individuals’ first components using the temporal series (temporal correlations, panel C) and spatial maps (spatial 
correlations, panel D). Temporal and spatial correlations were computed pairwise along individuals within the same 

condition. The black dashed line indicates the position of the mean correlation values for each condition (standard in blue, 
deviant in orange). 

 

 Consistent with the vast corpus of literature on passive auditory oddball evoked potentials [11, 14], we noted 

a clear divergence between the groups in the 150-250 ms span of the component time series. Specifically, a 

negative peak manifested around the 200 ms mark in the deviant condition, while an enhanced amplitude peak 

was apparent between 150 and 200 ms in response to standard stimuli (Figure 2A). The topographies of each 

component also exhibited the anticipated spatial patterns for MMN protocols, with activity predominantly 

concentrated in the fronto-central and central EEG electrodes (Figure 2.B). To evaluate the inter-subject 

reproducibility of the first component, we computed pairwise Pearson’s correlation coefficient across subjects 

within groups, both for the components’ time-series (temporal correlation, Figure 2C) and spatial maps (spatial 

correlation, Figure 2D). The first gTRCA component exhibited a high degree of temporal correlation across 

subjects (mean ± standard deviation of 0.81 ± 0.09 and 0.78 ± 0.09, for the standard and deviant conditions, 

respectively). Importantly, a similarly high level of correlation was also observed across the spatial maps (0.80 ± 

0.12 and 0.70 ± 0.21), despite the fact that the gTRCA approach relies solely on temporal correlations and imposes 

no constraints on the spatial distribution of components, which can emerge from different spatial filters for 

different subjects.  

The high spatial correlation observed across subjects in Figure 2D suggests that the group-level 

reproducibility of the first gTRCA component is not the result of overfitting. To further investigate this hypothesis, 

we analyzed the temporal stability of the first component under reduction of the number of individuals (Figure 

3A). 
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Fig. 3: Robustness and generality of the first gTRCA component in characterizing and classifying auditory 
oddball evoked potentials. Panel (A) presents the distribution of correlation values between the first gTRCA 

component obtained with the complete dataset and the same component extracted from subsets with a reduced 
number of individuals for both conditions (standard stimuli above, deviant below). The medians of the distributions 
for both conditions (standard and deviant) surpassed 0.95 with as few as 10 subjects and were above 0.995 with 
25 subjects. Panel (B) displays the results of utilizing the components extracted with 25 subjects to classify the 
auditory EPs of the remaining 15 individuals. Classification power was measured in terms of true positive rates 

(deviant), true negative rates (standard) and overall accuracy. In this figure, box plots display medians, 
interquartile ranges and outliers for the distributions resulting from 500 repetitions. 

 

 For this analysis, Pearson’s correlation coefficient was calculated between the components obtained with 

the complete dataset (40 individuals) and those derived from subsets formed by randomly removing 5 subjects at 

a time and repeated 500 times. The first gTRCA component displayed high levels of stability, with median 

correlations for both conditions reaching 0.995 for the removal of up to 15 subjects (medians and minimums values 

of correlations for the subset using 25 subjects were 0.997 and 0.977 for the standard condition and 0.995 and 

0.926 for the deviant condition, respectively). This analysis attested that gTRCA can be used to optimize evoked 

potential protocols by identifying the minimum number of subjects needed to extract reproducible patterns at the 

group level.  

As a final test of the generality of the method, we employed the first gTRCA component obtained from the 

subsets with 25 subjects (training data) to classify the auditory evoked potentials of the remaining 15 subjects (test 

data) as described in section 2.2.2. The temporal patterns extracted with gTRCA from the training dataset achieved 

a high level of accuracy (median value of 90%) in the test datasets despite the use of a simple best fit classifier 

(Figure 3B). This result suggests that the method can be useful to detect alterations in MMN components in 

conditions of clinical interest [13] - [20]. Future studies should investigate this hypothesis by combining gTRCA 

to other classification strategies.  

5 4. CONCLUSION 

In this study, we examined the use of gTRCA, an innovative multivariate signal decomposition technique, 

in characterizing auditory oddball evoked potentials derived from healthy individuals undergoing a mismatch 

negativity protocol. Our findings affirm the hypothesis that this method can extract components that are 

reproducible at the group level and exhibit the same spatiotemporal patterns as the EEG potentials evoked by 
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corresponding types of auditory stimuli. Moreover, we demonstrated here that the temporal patterns of gTRCA 

are robust enough to be extracted with a reduced number of subjects and are sufficiently specific to be used as 

templates in the classification of evoked potentials. These results carry potential applications not only in optimizing 

scientific and clinical studies, but also in developing diagnostic support tools for conditions associated with 

alterations in EEG evoked potentials. 
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