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Abstract - With the continuous development of deep learning and speech signal processing, speech synthesis technology has greatly 

improved in naturalness and comprehensibility, and many application technologies such as artificial intelligence voice assistant and 

personalized navigation have been widely used in real life, and the demand for personalized speech synthesis is increasing. Personalized 

speech synthesis requires models that can achieve speech timbre migration, also known as speech reproduction, with only a small number 

of target speaker speech samples. However, since human speech is highly expressive and contains rich information, including speaker 

identity information, prosody, rhythm, emotion and other factors, the limited speech data will lead to poor similarity and rhythmic 

performance of the model-generated speech, and the model needs to be fine-tuned to improve the quality of the synthesized speech. 

Therefore, personalized speech synthesis with few samples is a very challenging task. To achieve the goal of speech cloning, this paper 

proposes a personalized speech synthesis method based on FastSpeech2. By using fine-grained feature modeling module containing 

prosody extractor and prosody predictor, and a training strategy based on Generative adversarial network (GAN) and meta-learning, it is 

realized that personalized speech with high similarity and naturalness can be generated with a very short reference audio. The subjective 

and objective experiments also demonstrate that the model proposed in this paper can achieve high quality speech replication without 

fine-tuning the model under a few or even a single reference audio of the target speaker. 

Keywords: Voice cloning, zero-shot, feature modelling, fine-grained, GAN 

 

 

1. Introduction 
Text-to-speech (TTS) technology aims to generate intelligible and natural-sounding speech from a given text, enabling 

computers and smart devices to communicate with humans. With the increasing demand for personalized speech synthesis, 

TTS models are expected to generate high-quality speech for any user, even with limited speech data samples. Thus, 

personalized speech synthesis has become an important research direction for TTS technology, which requires TTS models 

to not only generate high-quality speech but also to be able to capture well with only a small number of speech data samples 

the speech of a given speaker. To achieve this goal, the TTS model should be able to generate the speech of multiple speakers 

and adapt well to the voices of unseen speakers.  

Personalized speech synthesis has been a popular research topic and it has different terms in academia and industry, 

such as voice reproduction, voice adaptation [1], voice cloning [2], custom speech synthesis [3], etc. With the increasing 

demand for personalized speech generation, the adaptation of TTS models to new speakers has been extensively investigated 

by domestic and international researchers. For example, many statistical parametric speech synthesis has been studied for 

speech adaptation [4], and the recent speech cloning challenge has attracted many participants [5-7]. 

The research directions of personalized speech synthesis TTS can be mainly divided into the following. 

(1) Firstly, train a multi-speaker speech synthesis system on a multi-speaker dataset, and then use samples of target 

speakers with less data to fine-tune the whole model [1-2] or some components of the model [8-10]. This approach works 

well but requires too many adaptive parameters. 

(2) Adaptation for multi-speaker model generalization, including generalization of the TTS model and adaptation to 

different domains to enhance the expressiveness of model synthesis. To allow the model to achieve fine-grained control and 

for modeling and decoupling of speech feature learning, this information can be analyzed and combined [11] from coarse to 
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fine granularity when modeling. Recent studies have used this approach for speaker modeling in TTS, such as obtaining 

language ID, speaker ID, style, and rhyme [12-13] from tag data. Rhyme information can be tagged according to some 

annotation patterns, such as AuToBI [14], INTSINT [15], etc. There is also the extraction of pitch and energy 

information from speech and duration from paired text and speech data[16-18]. AdaSpeech3 [19] designs specific of 

padding pause adaptation, rhythm adaptation, and timbre adaptation to make the personalized speech synthesis model 

more adaptive. 

(3) Personalized speech synthesis is achieved by modeling the speaker identity and then using the modeled speaker 

embedding vector in combination with a multi-speaker speech synthesis model. The most mainstream approach is still 

speaker reference encoder [20-24] and variational auto-encoder [25-27]. 

In addition, some adversarial generative models have been applied to speaker modeling, such as using advanced 

generative models to implicitly learn speaker feature information, which can better model multimodal distributions and 

solve the one-to-many mapping problem [28]. 

In this paper, we focus on the research of personalized speech synthesis with zero learning under few samples. The 

main research contents and innovation points of this paper can be summarized as follows. 

(1) To address the problems of large training data volume, high sound quality requirements, and weak generalization 

ability of current speech synthesis systems, we propose a fine-grained feature modeling module containing a prosody 

extractor and a prosody predictor to model the implicit prosody features in speech and realize the improvement of 

naturalness for the generated speech. 

(2) To address the problem that the model has weak generalization ability under the short reference speech of 

unknown speakers, we propose a discriminator module including speaker embedding discriminator and phoneme 

discriminator, and speaker prototype vector based on the training strategy of GAN and meta-learning [29], which 

enhances the adaptive ability of the model to unknown speakers and improves the sound quality and generalization 

ability of the model. 

(3) Through multiple comparative experiments, including MOS, CMOS evaluation, AB preference testing, our 

model's effectiveness is demonstrated, effectively meeting the needs of personalized speech synthesis. 

The remaining part of this paper proceeds as follows. The overview and components of the proposed model are 

described in section 2. Experiments and results are reported in section 3. Lastly, the conclusion and future work are 

covered in section 4. 

 
2. Methodology 

The model is mainly based on the FastSpeech2 model and its overall structure is mainly divided into a fine-grained 

modeling module and a GAN-based meta-learning module. The fine-grained modeling module contains a speaker 

encoder, a prosody extractor, and a predictor with the SALM structure, collectively referred to as the Hybrid TTS Model 

(HTM) structure. The GAN-based meta-learning module is divided into a generator module and a discriminator module. 

The overall structure of the model FFM-GAN is shown in the following diagram. 

 
3.1. Fine-Grained Feature Modeling Module 

The overall structure of the Hybrid TTS Model (HTM) includes: a speaker encoder with the SALM structure (which 

is introduced in our previous work [30] and fine-grained modeling module. By modeling the speaker identity, the model 

can synthesize speech with specific speaker characteristics without the need for model fine-tuning. 

We design a fine-grained feature modeling module based on implicit variables, including a prosody extractor based 

on the reference speaker's mel-spectrogram and a prosody predictor based on phoneme features and speaker information 

to extract acoustic features, which can model the speed, energy, pitch, and pauses of speech. The target speaker's prosody 

and tone can be combined for speech synthesis, ultimately improving the naturalness and robustness of the adaptive 

speech synthesis model.  

The structure of the personalized speech synthesis model with added fine-grained modeling module is shown in 

Figure 2. 
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Fig. 1: The overall structure of our model FFM-GAN. 

 

 
Fig. 2: The structure of the personalized speech synthesis model with added fine-grained modeling module. 

 

(1) Prosody Extractor 

During training, the fine-grained implicit prosodic labels are extracted from the real Mel spectrogram, and each prosodic 

label contains the prosodic information of a very short speech segment (ie, a word or a phoneme). Is a low-dimensional 

vector or scalar, they are mapped to the prosodic embedding vector, whose dimension is equal to the dimension of the 

phoneme-level feature, and then the prosodic embedding vector is added to the phoneme feature sequence, mixed together 

as the input of the subsequent decoder to predict the final Mel Spectrogram. This module is jointly learned with the TTS 

model. 

(2) Prosody Predictor 

During the inference stage, there is typically no corresponding reference audio of the target speaker available to serve 

as a guide for synthesized speech. Therefore, prosody predictor is designed to predict the speaker's prosody embedding vector. 

Prosody features are modeled using both the original phoneme sequence and predicted phoneme-level intonation vectors 

obtained from the reference Mel spectrogram. This approach enables effective learning of the target speaker's pronunciation 

habits, gender information, and other factors, resulting in improved similarity and naturalness of the synthesized speech in 

terms of fine-grained feature. 

After fine-grained feature modeling, the final phoneme embedding vector 𝐸𝐹𝑃 is calculated using the following equation: 

 
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 Here, E represents the function represented by the intonation extractor and P represents the function represented by the 

intonation predictor. During the training phase, the true intonation vector 𝐸𝐺𝑃 is extracted from the intonation extractor using 

the reference Mel spectrogram X. During the inference process, the predicted intonation vector 𝐸𝑃𝑃 is obtained from the 

phoneme sequence vector 𝐸𝑃𝑆 and the speaker embedding vector 𝐸𝑆𝑃. 
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3.2. GAN-Based Meta-learning Module 

Given the lack of adaptability of the model to unknown speakers, the model is based on the GAN meta-learning 

to realize the adaptation of the speech synthesis model with few samples and zero samples, and the TTS model trained 

the meta-learning algorithm is used for unknown speakers to adapt efficiently. The model is mainly divided into two 

a generation module and a discrimination module. The main model of the generation module is a hybrid TTS model 

(HTM) structure with a fine-grained feature modeling module, and the discrimination module is composed of a speaker 

embedding discriminator (SED). 

In addition to randomly sampling a sample (𝑡𝑠, 𝑋𝑠) containing text and corresponding speech from the corpus of 

the target speaker, an additional text information 𝑡𝑒 is introduced during training. In the training process, in addition to 

using (𝑡𝑠, 𝑋𝑠) to generate the predicted speech 𝑋̃𝑠 through the HTM model, and calculate the reconstruction loss Lrecon 

with the speech signal 𝑋𝑠 as the training target, an additional The text 𝑡𝑒 and the speaker embedding vector 𝐸𝑆𝑃 obtained 

from the target speaker's reference speech 𝑋𝑠 using the reference encoder generates an additional speech signal 𝑋̃𝑒, and 

use the subsequent discriminator to calculate the adversarial loss to achieve better personalization Generalization ability 

of speech synthesis models to unknown speakers. 

The speaker embedding discriminator (SED) has a similar architecture to the speaker reference encoder, the 

difference is that the speaker embedding discriminator uses a one-dimensional convolution instead of the original gated 

convolution (GLU), which is faster the training process of the accelerated model, the generated speaker embedding 

vector 𝐸𝑠𝑑 and the speaker embedding vector 𝐸𝑆𝑃 generated by the reference encoder have the same dimension. 

In the speaker embedding discriminator, a set of speaker prototype embedding vectors S is also introduced as a 

reference, where K represents the number of speakers in the training set, and 𝑆𝑖 represents the i-th speaker’s prototype 

embedding vector. This prototype embedding vector Directly uses the corresponding speaker ID in the training set to 

obtain it through embedding layer transformation, which has the same dimension as the speaker embedding vector 𝐸𝑠𝑑 

generated by the discriminator. During training, the model constraints 𝐸𝑠𝑑 and prototype vectors using a classification 

loss function. 

Calculate the dot product by calculating the speaker embedding vector 𝐸𝑠𝑑 generated by the speaker embedding 

discriminator and the prototype vector S of all speakers in the training set, and then achieve the purpose of multi-

classification by calculating the cross-entropy loss, the speaker the calculation formula of the prototype vector loss 

function 𝐿𝑐𝑙𝑠 is as follows: 
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Where E𝑠𝑑
𝑇  means that 𝐸𝑠𝑑 has been transposed. 

 
3. Experiments 
3.1. Dataset and Settings 

In the preprocessing stage, the speech signal is obtained from the Mel spectrogram after windowing, framing, short-

time Fourier transform, and Mel filtering. The 80-dimensional Mel spectrogram is selected as the target output and input 

for training. A Hanning window with a window length size of 1024 is used in the short-time Fourier transform, with a 

frameshift set to 256 sampling points, FFT size set to 1024, and frequency range set to [0, 8000]. The speech signal is 

downsampled using Librosa before and after mute cropping, with all audio files downsampled to 22.05 kHz. The model 

employs four FFT blocks for both the phoneme encoder and the Mel spectrogram decoder, based on FastSpeech2. 

Additional preprocessing networks are set up for the encoder and decoder, comprising two convolutional layers and a 

linear layer with residual connections in the encoder and two linear layers in the decoder, to increase the model's 

robustness. All hidden vectors, including the phoneme embedding vector, speaker embedding vector, and input and 

output of FFT blocks, are set to 256 dimensions. All inputs are padded to maximum length during training. 
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The HiFi-GAN introduced in Chapter 2 is utilized as the vocoder to convert the generated Mel spectrogram into audio 

waveform files, exhibiting strong speaker adaptability. The Adam optimizer is used for optimization in the model training, 

with the initial learning rate set to 0.0002. The learning rate decay strategy is implemented by multiplying by 0.9 after every 

10,000 iterations. The batch size is set to 16, and both the model and the comparison models are trained on two GPU 3080Ti 

RTX machines for 200,000 iterations. 

 
3.2. Subjective Evaluations 

To ensure the overall performance of the model and evaluate the impact of individual modules, we have designed several 

baseline models for comparison:  

(1) GT: Target speaker reference speech audio as ground truth; (2) GT_HiFi, which generates synthetic audio by passing 

the Mel spectrogram obtained from the target speaker's reference speech audio through HiFi-GAN; (3) Base: Use the multi-

speaker FastSpeech2 model to synthesize the Mel spectrogram, and then uses HiFi-GAN to obtain the synthesized audio; (4) 

Base-FFM: Based on the model (3), a fine-grained feature modeling module is added; (5) Base-GAN: Based on the model 

(3), a GAN-based meta-learning module is introduced; (6) FFM-GAN: Our proposed final model with a fine-grained feature 

modeling module and a GAN-based meta-learning module. 

 In our experiments, we verified the adaptability of the model to unknown speakers. Specifically, we randomly selected 

an audio sample from the speaker in the test set as a reference and used the reference speech and the given text to generate 

speech. We evaluated the performance of the model using the MOS (mean opinion score) and SMOS (standard deviation of 

MOS) indicators, which were manually rated on a scale of 1 to 5 by 10 judges for each audio sample. The evaluation results 

with 95% confidence intervals are presented in Table 1. 

 
Table 1: Subjective evaluation results of comparative experimental verification. 

 

Model MOS SMOS 

GT 4.42±0.13 4.77±0.14 

GT-HiFi 4.12±0.15 4.62±0.14 

Base 3.45±0.12 2.97±0.13 

Base-FFM 3.52±0.15 3.43±0.16 

Base-GAN 3.58±0.13 3.59±0.13 

FFM-GAN 3.67±0.11 3.70±0.14 

 

We conducted a naturalness test using AB test, where listeners were presented with pairs of synthesized samples with 

identical text and asked to select the sample that sounded more natural. The experimental results, as shown in Figure 3, 

indicate the level of naturalness for each synthesized sample. 

 

 
Fig. 3: The results of AB tests. 

 

It is evident from the results that the fine-grained feature modeling module enables speaker representation learning for 

the target speaker, resulting in higher SMOS values and fluent synthesized speech. Moreover, using the reference speech of 

a single target speaker can achieve better-personalized speech synthesis in terms of sound quality and similarity. The GAN-
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based meta-learning module further enhances the similarity and naturalness of synthesized speech, leading to a 0.2-point 

improvement in SMOS compared to other models. Additionally, the sound quality of the synthesized speech is closest 

natural speech. The proposed final model, FFM-GAN, exhibits clear advantages over other models. 

 
3.3. Objective Evaluations 

In addition to subjective evaluation, we also use many objective evaluation indicators to assist in the analysis of the 

synthesized speech to prove the effectiveness of the prosodic module, including:  

(1) Mel Cepstrum Distortion (MCD): MCD is one of the objective indicators for evaluating model-synthesized 

speech, and it is a measure of the numerical difference between the Mel cepstrum sequences of two speeches. (2) Gross 

Pitch Error (GPE): Measures the pitch similarity between the reference audio and the predicted audio. The lower the 

error rate, the more accurate the prosody of the speech. (3) Voicing Decision Error (VDE): Measures the difference in 

voice decision between reference audio and predicted audio. (4) 𝐹0 Frame Error (FFE): Combining the two errors of 

GPE and VDE, count the percentage of frames with both errors at the same time. 

The comparison results are shown in Table 2. 

 
Table 2: Objective evaluation results of comparative experimental verification. 

 

Model GPE↓ VDE↓ FFE↓ MCD↓ 

Base 0.47±0.17 0.33±0.16 0.49±0.21 4.72±0.20 

Base-FFM 0.41±0.13 0.29±0.15 0.45±0.14 4.30±0.18 

Base-GAN 0.45±0.16 0.37±0.14 0.54±0.23 4.83±0.22 

FFM-GAN 0.39±0.18 0.28±0.19 0.43±0.17 4.28±0.19 
 

The table shows that the model with fine-grained feature modeling module consistently outperforms other models. 

Adding a prosodic predictor with speaker embeddings allows sequential control of prosody, and a GAN-based meta-

learning module improves the robustness of synthesized speech. Together, they can help synthesize high-quality and 

natural speech. 

 
3.4. Ablation Experiment 

We further conduct ablation experiments to verify the effectiveness of various components in the GAN-based meta-

learning module of the personalized speech synthesis model, including the verification of the role of speaker embedding 

discriminator and speaker prototype vector. In the ablation study, we use three metrics: MCD, MOS and SMOS, and the 

results are shown in the Table 3. 

 
Table 3: Validation results of ablation experiments. 

 

Model MOS↑ SMOS↑ MCD↓ 

FFM-GAN 3.76±0.14 3.83±0.13 4.28±0.18 

w/o SED 3.75±0.13 3.59±0.16 4.52±0.21 

w/o S 3.72±0.13 3.68±0.14 4.31±0.13 

 

The ablation study results show that the speaker embedding discriminator and speaker prototype vector are effective 

components in the GAN-based meta-learning module. Without the speaker embedding discriminator, the SMOS score 

drops significantly, indicating that the model cannot effectively learn the speaker representation. Similarly, removing 

the speaker prototype vector also leads to a decrease in SMOS score, indicating that the speaker prototype vector plays 

a crucial role in controlling the speaker similarity of the synthesized speech. Overall, these results demonstrate the 

importance of these components for achieving high-quality and personalized speech synthesis. 
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3.5. Model Generalization Capability Verification 

Finally, we used the speech audio of the target speaker with different lengths as a reference, and selected four different 

different lengths: <1s, 1-3s, 3-10s and 10-20s, we scored MOS and SMOS for subjective evaluation of the synthesis effect 

effect of each model under the above reference audio. The scoring results are shown in the Table 4. 

 
Table 4: Evaluation results of synthesized audio with different lengths of reference audio. 

 

Model 
MOS SMOS 

<1s 1-3s 3-10s 10-20s <1s 1-3s 3-10s 10-20s 

Base 3.32±0.12 3.36±0.10 3.42±0.10 3.47±0.14 2.33±0.12 2.41±0.13 2.65±0.13 2.67±0.10 

Base-FFM 3.45±0.10 3.48±0.11 3.51±0.13 3.53±0.13 2.18±0.17 3.37±0.10 3.39±0.13 3.41±0.12 

Base-GAN 3.53±0.13 3.58±0.12 3.62±0.12 3.59±0.12 3.27±0.13 3.46±0.16 3.66±0.12 3.56±0.14 

FFM-GAN 3.54±0.12 3.57±0.14 3.66±0.10 3.64±0.12 3.32±0.16 3.63±0.14 3.71±0.10 3.68±0.12 

 
A longer reference audio can help the model to better learn the characteristics of the target speaker. Our model 

performance has also reached the best under various lengths of reference audio, which directly illustrates the fine-grained 

feature modeling module and based on Effectiveness of GAN-based meta-learning module. 

 

4. Conclusion 
As a core technology in speech interaction, speech synthesis has advanced significantly with the fusion of deep learning 

and speech signal processing, allowing for high naturalness, clarity, and intelligibility in speech synthesis. However, there 

are still numerous challenges to be addressed, such as adapting speech synthesis to low-sample and low-quantity training 

data, and achieving expressive emotional speech synthesis.  

This paper presents a personalized speech synthesis model based on the FastSpeech2 architecture that uses minimal 

training data and requires no fine-tuning to achieve high similarity and naturalness in replicating a target speaker's voice 

based on a single reference speech. Additionally, the model will be improved to allow for the combination and control of 

different styles and tones, as well as the ability to generate target speaker speech with different rhythms and styles, thus 

expanding its application in real-world scenarios. 
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