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Abstract  
     Increasing complexity of adversarial engagement in urban warfare scenarios suggests that there is a serious demand for 

technologies that can assist the warfighter’s decision-making capabilities. This is especially true for stressful conditions 

experienced by soldiers where optimal and expedient execution of missions and directives is needed under the yoke of 

resource constraint.  In such situations, the age-old military and historical hallmarks of squadron group belief consensus 

supporting mission accomplishment and optimal movement of a unit based on probabilistic assessment of value come to the 

fore and are vital elements in supporting and preserving mission integrity. Both fundamental drivers for squadron success 

can be supported and demonstrated using a two-element statistical machine learning formulism. The first part utilizes 

Dempster-Shafer evidential theory for belief amalgamation across a squadron and the second part dynamic programming for 

estimation of optimal path movement through a hostile domain. Simulations using these two important geo-intelligence 

processors are performed to demonstrate machine learning-based processing which can ultimately be utilized in intelligent 

squad weapon systems aiding in decision-making. 
     The first formulism is developed around the geo-intelligence scenario of a 4-soldier squadron trying to decide which 

direction to proceed based on the amalgamation of individual beliefs. Dempster-Shafer evidential theory provides a way to 

amalgamate the beliefs of each soldier via a method that uses orthogonal summation of probability mass associated with 

different propositions. Eleven propositions exist for the 4-directional problem encompassing not only the initial 4 directions, 

but propositions based on logical ‘or’ as well as the state of ignorance parameterizing uncertainty. An orthogonal 

amalgamation template allows for amalgamation of belief information for soldiers 1 and 2 and then soldiers 3 and 4. These 

soldier beliefs are then amalgamated into a virtual soldier for all soldiers representing the squadron group mind.  Simulation 

results demonstrate that given the initial probability mass profiles for each soldier, direction 2 is the optimal direction to 

proceed in providing a logical guide for squadron movement.  

     The increasing complexity of warfighter scenarios with respect to adversarial engagement and non-traditional 

environments of contention also suggests a serious need to leverage technology to go beyond mere state estimation towards 

algorithms prescribing actions.  Dynamic programming is well suited for policy-based decision-making where there is a need 

to assist humans in making decisions where the best choices or actions are not clear and depend on values placed on specific 

situations or states. To demonstrate the applicability and power of dynamic programming to path-based decision-making, a 

fictious model problem of finding the optimal policy for moving a soldier squadron through a multiple room building is 

addressed. The objective is to illustrate how prior geo-intelligence information in the form of transition probabilities and 

rewards can be used to facilitate decision-making in terms of what should optimally be done rather than what must be done. 

The objective is also focused on understanding the effect of noise infiltration on optimal policy estimation.  
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     A soldier squadron is tasked with moving through a 4-floor building and ‘clearing’ it. A 16 state-2 action dynamic 

programming model for building ‘clearing’ is created where the aim is to understand on average what rooms should be places 

of hostile engagement (action 1) and what rooms should not (action 2). Prior ground clandestine geo-intelligence provides 

the room-to-room transition probability and reward fields. The geo-intelligence dynamic programming issue of interest is 

how the optimal policy (function mapping of state to action) changes as noise infiltrates the geo-intelligence system, changing 

the transition probability and reward fields.  

     Baseline transition probability and reward fields for the 16 state-2 action domain are set up where particular attention is 

paid to their prescription based on underlying fire fight capability. The optimal policy resulting from the baseline transition 

probability and reward fields demonstrates that hostile engagement is optimal along a floor while passivity is optimal at the 

floor transition points. This is consistent with floor transitions being choke points where quick movement rather than fighting 

is more highly rewarded. When the reward field for hostile engagement is lowered near the end room floor transition points, 

continual hostile engagement completely along a floor is no longer optimal. Hostile engagements should be performed near 

the beginning and middle of the floor.  

     Noise infiltrating prior clandestine geo-intelligence causes modulation of the state transition probability field which cause 

changes in the baseline optimal policy. Results suggests that uncertainty in the transition probability field associated with one 

type of action precipitates increases in the alternate action. This suggests that increases in hostile engagement actions are 

associated with increased uncertainty in transition probabilistic information for the non-hostile engagement action. Increases 

in non-hostile engagement action are associated with increased uncertainty in transition probabilistic information for the 

hostile-engagement action. 

 

Keywords: action, belief, building, Dempster-Shafer evidential theory, dynamic programming, floors, hostile 

engagement, non-hostile engagement, optimal policy, propositions, reward field, rooms, state, transition probability field 

 
1. Introduction 

With increasing complexity of warfighter scenarios with respect to adversarial engagement and non-traditional 

environments of contention, there is an increasing need to leverage technology to process geo-intelligence information to 

develop not only optimal state insight but also optimal decision-making. Dempster-Shafer (D-S) evidential theory-based  

belief amalgamation [1] is well suited to information fusion needed in different geo-intelligence scenarios including group 

squadron optimal direction estimation for adversarial engagements. The fictious model problem of deciding which 

direction a squadron should proceed as a unit after a fire fight engagement is addressed to demonstrate the power of D-S 

evidential theory for group belief amalgamation. 

Similar warfighter scenarios suggest a serious need to leverage technology to go beyond mere state estimation towards 

algorithms that prescribe actions. Dynamic programming [2] is well suited for policy-based decision-making where there is a 

need to assist humans in making decisions. In these situations, the best choices or actions are not absolutely and deterministically 

clear and depend on values placed on specific situations or states. The applicability of dynamic programming to path-based 

decision-making is demonstrated via the formulation and solution of the fictious model problem of finding the optimal policy for 

moving a squadron through a multiple room building. The objective is to illustrate how previous geo -intelligence 

information in the form of transition probabilities and rewards (costs) can be used to facilitate decision making in terms of what 

should optimally be done rather than what must be done. Such evaluation of state and action is useful in facilitating what 

optimal pathways should be adhered to, allowing for the mitigation of mistakes that can cost human life.  

 

2. Problem Scenario and Methodology for Soldier Squadron Belief Amalgamation 
The problem scenario addressed using D-S evidential theory is as follows. A 4-soldier squadron has just finished a 

fire-fight engagement where artillery fire from four different directions have been received. Machine learning (ML) aided 

assault rifle technology has provided the state estimate that the direction of highest muzzle flash variance and therefore the 

most appropriate direction to proceed in is direction 2 from a range of four different direction choices. (The four directions 

span four equisector divisions of a 180-degree angular domain situated in front of the squadron). This machine learning 

estimate is communicated to each individual soldier and facilitates cognitive construction of individual beliefs as to which 

direction is optimal. There is a desire to amalgamate the beliefs of all soldiers to provide a fuller understanding of which 

direction is optimal. D-S evidential theory provides a way to amalgamate the beliefs of each soldier via a method that uses 
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orthogonal summation of probability mass associated with different propositions. Belief propositions are considered exhaustive 

and exclusive tolerating no logical ‘and’ [3]. The belief state for soldiers 1-4 at the problem outset is shown in table 1. Note 

that soldiers 1 and 2 experience more uncertainty than soldiers 3 and 4. Eleven propositions exist for the 4 directional 

problem encompassing not only the initial four directions, but propositions based on logical ‘or’ as well as the state of ignorance 

parameterizing uncertainty. E.g. The problem proposition span contains probabilities associated with direction 1 or direction 2 

(p1 U p2) as well as uncertainty (theta) as shown in table 1. 

 

 
 

 

 

 

 

Information fusion of two non-orthogonal propositions is based on multiplication of probability mass and summation of 

like probability mass categories. This is followed by multiplicative normalization of the probability mass associated with 

different propositional categories which emanate from empty set-based probability mass designated by phi [4]. The orthogonal 

amalgamation template or OAT allows for amalgamation of belief information for soldiers 1 and 2 and then soldiers 3 and 

4. This is shown in table 2. Each element of the table delineates the probability mass amalgamation associated with the 

fusion of the respective proposition mass elements situated along the vertical and horizontal. The virtual soldier beliefs 

associated with soldiers 1 and 2 and soldiers 3 and 4 are then amalgamated into a group virtual soldier for all soldiers 

representing the squadron group mind.  This helps guide group decision making with respect to which direction to proceed. 

Based on the belief data shown in table 1, it is not clear which direction is optimal suggesting a rigorous need for 

information fusion using the OAT. 

 

 

Table 1: Soldier belief probability mass distributions for the 11 propositions spanning the optimal 

direction problem. The variable theta signifies uncertainty due to ignorance. The vertical label 

designates the 4 directions, and the horizontal label designates the 11 propositions. 
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3. Problem Scenario and Methodology for Soldier Squadron Building Clearing and Advancement 
In the next problem scenario, a squadron is tasked with moving through a 4-floor building and ‘clearing’ it. Rooms on a floor 

are connected sequentially to each other where each floor is connected to the adjacent floor above as shown conceptually in 

Fig. 1. 

 

 

Table 2:  Orthogonal amalgamation template (OAT) for the 11 propositional states spanning the optimal four direction problem. Basic 

belief assignment is distributed to different propositions at each amalgamation stage using this template.  The variable phi signifies the 

empty set created by the orthogonal summation process and is probability mass ultimately redistributed to all non-empty propositions 

by a multiplicative normalization factor. The variable phi represents uncertainty based on ignorance or not knowing. The vertical and 

horizontal labels designate the 11 probability mass propositions existing in the belief span of the problem. 
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Dynamic programming is exploited to assist leadership in gaining a broad sense of how simple state policies can be 

extracted from limited amounts of prior building geo-intelligence. A 16 state-2 action dynamic programming model for 

building ‘clearing’ is created where the aim is to understand on average what optimal points in space should be places of hostile 

engagement (action 1) and what points should not (action 2) in the 16-room state space domain (Fig. 1). Policy prescription of 

action based on state emanates from the application of Bellman’s equation [5] which allows for estimation of the present 

value V of a state s in terms of rewards R, transition probabilities P, and future values V' which are dependent on future 

states s'. Prior ground clandestine intelligence provides the room-to-room transition probabilistic fields as well as the reward fields. 

The higher and more important geo-intelligence dynamic programming issue of interest is how the optimal policy 

(function mapping of state to action) changes as noise infiltrates the geo-intelligence system, changing the transition probability 

and reward fields. Understanding this issue is tantamount to understanding when estimated policies should be changed based on 

evidence which modulate the fields.  

Baseline transition probability and reward fields are shown in Fig. 2a-d for the 16 state - 2 action domain.  

State transitions are only possible along the horizontal floors of the building designated as horizontal rows in  

Fig. 1. Room I signifies the room transitioned to from room J.  Transitions to the next floor are only possible at 

the end points where the green arrows are shown in Fig 1. This transition is quantified in Fig. 2a using large 

values at the endpoint rooms designated by 4, 8, and 12.  When non-hostile engagements are met, room transitions are 

allowed only along that floor (Fig. 2a) with increases in transition to the end room of the floor as forward progress is made 

along the floor. Probability for advancement is greatest for rooms which are adjacent.  When hostile engagements are met, 

sufficient defence force and fire power is assumed to allow for defence force victory. This allows for transitions directly to 

the end point of the floor (which is the beginning of the next floor) irrespective of room position along the floor (Fig. 2b).   

Reward fields for non-hostile engagement and hostile engagement mimic the respective state transition 

probability field (Fig. 2c-d). When non-hostile engagements are met, rewards are maximum for transitions to the next room in the 

floor sequence. Smaller rewards are given to the rooms further down in the sequence and to back sliding. Rewards for 

movement to the first room of the next floor are provided at the end room of the preceding floor. When hostile 

engagements occur, rewards are given only for transitioning to the end room of the floor and the beginning first room of 

the next floor (with a slightly lower probability).  
      a)                                                                                                  b) 

Figure 1: Military floor plan scenario for a squadron ‘clearing’ a two-dimensional building. Height and width 

dimensions shown. Dynamic programming is used to estimate the optimal points in space when hostile engagements should be 

performed along each floor of the building. A 16-room building is traversed in the direction outlined where the Bellman equation is 

optimized over the 2 actions of hostile or non-hostile engagement. A possible policy transition output result is shown in red and 

black. Red arrows signify hostile transitions and black arrows signify non-hostile transitions. Green arrows are 

transition points to advance to the next floor of the building.  
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     c)                                                                                                   d) 

 
 
 
 
 
 
 
4. Dempster-Shafer Evidential Theory Results for Soldier Squadron Belief Amalgamation  

Fig. 3 a-b) shows the probability mass distributions over the 11 propositions for the amalgamations pertaining to 

soldiers 1-2 and soldiers 3-4 respectively. The virtual mind for soldiers 1-2 shows a maximum at p1 suggesting that 

direction 1 is optimal for these 2 soldiers. The soldiers 3-4 information amalgamation shows that direction 2 is optimal. 

Amalgamation for all soldiers shown in Fig. 3c shows that proposition 2 is optimal with proposition 3 being a close second. 

Proposition 3 being probabilistically a strong option occurs because low but significant probability mass exists for p1 U 

p2 and p1 U p3 which ‘bleeds’ probability mass into propositions p2 and p3. Simulation results support the classification result of 

direction 2 as the optimal direction to proceed in. This result provides geo-intelligence leadership a clear way of discerning belief 

in a group sense providing a rigorous basis for making a single robust decision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: a-b) Transition probability fields for non-hostile engagement and hostile engagements respectively. 

c-d) Reward field for hostile and non-hostile engagements respectively. Fields span the domain of a 4 floor, 

16 room building where the 2 actions of non-hostile and hostile engagements are possible. Note local room 

transition probability structure and reward fields. Room I signifies the room transitioned to from room J. 

Low probability is signified by the white colored boxes.  
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                                               a)  

  
                                      b) 

 
                                   c) 

 
 

 

 

 

Figure 3: a) Probability mass distribution for soldiers 1 and 2. b) Probability mass distribution for soldiers 3 and 

4. c) Probability mass distribution for soldiers 1, 2, 3, and 4. Line plots and bar graphs shown together for 

clarity. The optimal direction of squadron movement is proposition or direction 2 indicated by the local 

maximum. 
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5. Dynamical Programming Results for Soldier Squadron Building Clearing and Advancement 
Results 

The optimal policy resulting from the transition probability and reward fields shown in Fig. 2a-d is displayed in Fig. 

4a. It clearly shows that hostile engagement is optimal along a floor while passivity is optimal at the end floor transition 

points labelled as 4, 8, and 12.  In other words, there is much to be gained by the squadron through use of judicious hostile 

engagement where fighting should not be executed in all rooms. This is consistent with floor transitions being choke points 

where quick movement rather than fighting is rewarded more. E.g. Fighting is easier and more expedient along floors rather than 

at floor transition points.  

 

 

a)                                                                                            b) 

 

 
c)                                                                                       d) 

 
 
 
 
 
 
 
 

 

 

 

When all fields stay the same and the reward field for non-hostile engagement is lowered near end room floor transition 

points as shown in Fig. 2b, continual hostile engagement along a floor is no longer optimal. Hostile engagements should be 

performed near the beginning and middle of the floors as shown in Fig. 5a. This optimal planning simulation suggests that 

soldier gun artillery should be saved and used only at specific places of hostile engagement along the floor. 

 

 

Figure 4: a) Optimal policy for simulation 1 which has Fig. 2a-d) transition probability and reward fields. b)  Simulation 2 

reward field for non-hostile engagement. Transition probability fields for both actions and the reward field for hostile 

engagement are the same as simulation 1. c) Simulation 3 transition probability field for non-hostile 

engagement possessing white noise on top of Fig. 2a non-hostile engagement transition probability field. 

Mean value and variance for superimposed white noise are 0.0625 and  0.0016 respectively. Transition 

probability field for hostile engagement is the same as simulation 1 as well as reward fields for both 

actions. d) Simulation 4 transition probability field for hostile engagement possessing white noise on top of 

Fig. 2b hostile engagement transition probability field. Mean value and variance for superimposed white 

noise are 0.0625 and 0.0011 respectively. Transition probability field for no-hostile engagement is the same as 

simulation 1 as well as reward fields for both actions. 
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Figure 5: a-c) Optimal policies for simulations 2–4 for the modulated transition probability and 

reward fields. Actions 1 and 2 delineate no fighting (non-hostile engagement) and fighting (hostile 

engagement) respectively. See text for discussion. 
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White noise infiltration of prior geo-intelligence causes modulation of the state transition probability fields which 

cause changes in the baseline optimal policy shown in simulation 1. White noise was added to the original non-hostile 

engagement transition probability field in simulation 1 where the mean value and variance were respectively 0.0625 and 

0.0016. All the other fields were kept the same as in simulation 1. When white noise is superimposed on the non-hostile 

engagement transition probability field shown (Fig. 4c), more rooms predicating hostile engagement appear semi-randomly 

in the building domain (Fig. 5b).  

White noise was also added to the original hostile engagement transition probability field in simulation 1 where the 

mean value and variance were respectively 0.0625 and 0.0011. All the other fields were kept the same as in simulation 1. 

When white noise is superimposed on the hostile engagement transition probability field as shown in (Fig. 4d), more rooms 

predicating non-hostile engagement appear semi-randomly in the building domain (Fig. 5c).  Both results suggests that 

uncertainty in the transition probability field associated with one type of action precipitates increases in the alternate action. 

In other words, increases in hostile engagement actions are associated with increased uncertainty in transition probabilistic 

information for the non-hostile engagement action. On the other hand, increases in non-hostile engagement actions are 

associated with increased uncertainty in transition probabilistic information for the hostile-engagement action. 

 
6. Conclusion 

D-S evidential theory for optimal direction discernment is demonstrated for a fictious but serious geo-intelligence 

problem. The formulism can be applied to the development of intelligent squad weapon decision-making aids [6]–[8] to support 

a unified perspective for group decision making. It is especially relevant to problems where ignorance is endemic and where 

belief states for each soldier are not drastically different. Such differences can create paradoxes which are not only counter 

intuitive but dangerous where human life is concerned [3].  

A simple two-action dynamic programming model is applied to the problem of optimal decision making  

for ‘clearing’ a building of hostile adversaries providing leadership rudimentary insight into the probability of fighting 

engagement along floors. The model provides insight into the effect of uncertainty on policy modulation, allowing 

for potential understanding as to when and where resources (artillery, increased manpower,  and more 

reconnaissance) are needed. This is especially important when prior situational knowledge is suspect. Expansion of the 

dynamic programming results is possible via the use of function approximations [9] which would allow for a fuller 

understanding of action-based policy based on more data.  
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