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     Preprocessed electromagnetic signals in the form of frequency spectral groups are constantly acquired from electro-

optical platforms where anomalous frequency structure is often hidden. These anomalies can be detrimental to trusted 

systems holding important information. There is a need to obtain vital anomalous behavioural statistical information which 

can be transformed into empirically driven predictive models for pattern–of-life estimation supporting trusted system 

protection. A two-tier algorithmic approach is employed to accomplish this using Kalman filter-based spectral quantification 

and Bayesian modelling. Kalman filter-based spectral deviation quantification is developed to estimate the average spectral 

deviation for an ensemble of frequency spectra comprising a series of spectral groups. The spectral-band based quantification 

of anomalous spectral group behavior over time supports the development of second stage algorithms aimed at 

parameterizing the statistical structure of the average spectral deviation as a random process. Algorithms here are based on 

Bayesian statistical estimation of mean and variance of sequentially estimated spectral deviation values for spectral groups, 

the application of analysis of variance (ANOVA) to mean spectral deviation values, and Markovian modelling of the mean 

and variance of spectral deviation values. 
     The development of algorithms supporting anomalous spectral deviation quantification and Bayesian diagnostics is based on 

the analysis of hyperspectral imagery (HSI) data. A HSI cube of land and buildings was broken up into fourteen 100 X 100 pixel 

image chips which were used as a generator of frequency spectral groups. A typical HSI pixel spectral signature for dirt with added 

noise was extracted from the first image chip representing the mode of the data set and used in a Euclidean metric for measurement 

of anomalous spectra within image chips. HSI spectral signatures exceeding the metric threshold of 0.2 were flagged as anomalous 

spectra for each image chip and Kalman filtration used to characterize flagged spectral signals in each image chip. The Kalman 

filter applied to frequency spectra uses a series of frequency spectral energy measurements over a finite bandwidth containing 

random noise to produce a statistically optimal estimate of spectral band deviation from the mode spectral signal. The spectral 

deviation energy estimated from the filter was averaged over the full spectral bandwidth of a flagged spectrum and then over each 

image chip. The array of 14 image chips were then cycled over 20 times providing a 280-point average spectral deviation time 

series. For large numbers of frequency spectra in a single image chip, the average spectral deviation has a probability distribution 

that is log normal in shape. This is not surprising given that energy deviation is what is measured by the Kalman filter algorithm. 

     Further insight, corroboration, and modelling of the statistical generation process for spectral deviation change was accomplished 

using analysis of variance (ANOVA) and Bayesian statistical modelling. Twenty F-statistic values for groups of fourteen image chips 

comprising the data domain were all close to 1 corroborating that the average spectral deviation values for all image chips or 

spectral groups do emanate from the same statistical process. Bayesian recursive estimation of the mean and variance 

for the average spectral deviation associated with each image chip was performed to produce a 280-point time 

series for each of these quantities. Periodicity of the mean spectral deviation was evident along with changes in 

the uncertainty intervals suggesting possible statistical structure linking mean and variance. Hidden Markov 

modelling, where the average spectral deviation is the state variable and the accompany variance is the observation 

variable, was performed to explore this idea. Preliminary analysis suggests that based on limited data, high 

anomalous spectral deviation structure tends to have a lower uncertainty which is useful information for the 

synthesis of anomalous spectral behavior characteristic of this underlying random process.  
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1. Introduction 
Pre-processed electrooptical signals in the form of frequency spectral groups are constantly acquired from electro-

optical (EO) platforms where anomalous frequency structure is often hidden. This latent structure can be detrimental to 

systems holding important information. There is a need to obtain vital statistical information about anomalous behavior 

which can be transformed into empirically driven predictive models for pattern–of-life estimation. A Kalman filter-based 

spectral deviation quantification algorithm is applied to estimate the average spectral deviation, a quantification of 

anomalous behavior, for an ensemble of frequency spectra comprising spectral groups. This is the first step in addressing 

this need.  Along with spectral-band based quantification of anomalous behavior, there is also a desire to understand how 

anomalous behavior, in the form of average spectral deviation, changes over time. To support this, algorithms are 

developed to model the structural change in average spectral deviation time series. Algorithms here are based on 

Bayesian statistical estimation of mean and variance of sequentially estimated spectral deviation values for spectral 

groups, the application of analysis of variance (ANOVA) to mean spectral deviation values, and Markovian modelling of 

mean and variance of the average spectral deviation values.  
 

2. Data Structure and Methodology 
A hyperspectral imagery cube, shown in Fig. 1a, broken up into a series of fourteen 100 X 100 pixel image chips was 

used as an ensemble frequency spectrum generator. This HSI data comes from the Rochester Institute of Technology (RIT) 

hyperspectral imagery data set which was part of the Target Detection Blind Test Project [1]. A typical HSI spectral signature for 

dirt with added noise was extracted from the first image chip (labeled as α1

 

in Fig. 1b) representing the mode of the data set.  

 

a)                                                                                                                     b) 

 
 

 

 

 

 

 

 

It is used in a Euclidean metric for measurement of anomalous spectra within image chips. HSI spectral signatures 

exceeding the metric threshold of 0.2 were flagged as anomalous spectra for the image chip spectral group.  

Kalman filtration was used to characterize flagged spectral signals in each image chip. The Kalman filter uses a series of 

frequency spectral energy measurements over a finite bandwidth containing random noise to produce a statistically optimal 

estimate of spectral band deviation from the mode spectral signal [2]. The estimated state variable is the noise filtered spectral band 

deviation obtained using a predictor-corrector formulism. E.g. The filter estimates the spectral deviation at some frequency (the 

predictor) and obtains feedback in the form of noisy observations which updates these values (the corrector). The Kalman filter-

Figure 1: a) RIT hyperspectral imagery (HSI) cube from the Target Detection Blind Test project which is used to generate 

frequency spectral groups. Image chips denoted by white boxes represent demarcations of spectral groups with labels representing 

average spectral deviation values associated with the spectral groups. b) HSI signal for dirt representing the mode for the entire 

HSI cube used in the Euclidean metric to flag anomalous spectral signals in image chip spectral groups. Random noise added to 

spectrum. 
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based spectral quantifier assumes the full bandwidth spectral energy deviation can be modeled as a Markovian process [3]. E.g. 

Only the estimated spectral abundance or deviation from the previous frequency band and the current spectral deviation 

measurement value are needed to compute the current spectral deviation estimate. The Kalman filter has two parameters which 

influence estimation of the spectral abundance. The process noise for the Kalman filter spectral quantifier was set to 0 and the 

measurement noise set to 0.1 [2]. 

 

3. Kalman Filter-Based Spectral Quantification and Bayesian Statistical Diagnostics Results 
Examples of the spectral deviation for the first image chip spectral group are shown in Fig. 2a. and Fig. 2b. The spectral 

deviation energy is averaged over the full spectral bandwidth providing an average spectral deviation time series shown in Fig. 2c. 

For extremely large N, where N is the number of pixel spectrum realizations, the average spectral deviation time series has a 

probabilistic distribution that is log normal in shape. This is not surprising given that energy deviation is what is measured by the 

Kalman filter algorithm. 

Average spectral deviation time series were calculated using the 14 image chips which were cycled over 20 times. The 

resulting 280-point average spectral deviation time series was calculated using the same process carried out on the first image chip 

for the series of image chips shown in Fig. 1a. The statistical generation process for state spectral deviation change was addressed 

using analysis of variance (ANOVA) [4]. Twenty F-statistic values for each of the 14 image chips were all close to 1 

suggesting that the average spectral deviation values for the image chips do not deviate much from each other. This is consistent 

with the spectral deviations all emanating from the same statistical process. 

Bayesian recursive estimation of the mean and variance for the average spectral deviation associated with each image chip 

over the 20 cycles is shown in Fig. 2d. [5,6]. This was done after taking the exponential of the mean spectral deviation for 

each image chip. The time series shows an anticipated 14-image chip periodicity for the average spectral deviation with 

accompanying variance bounds. Mean values and errors bounds fluctuate erratically and it is instructive to examine if there is a 

pattern existing within the time series that is not immediately evident. This can be accomplished using hidden Markov modelling.   

 

a)                                                                                                b) 
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     c)                                                                                d) 

 
 

 

 

 

 

 

 

 

Hidden Markov modelling of the 280-point Bayesian mean spectral deviation and variance data series provides transition 

structural insight into the relationship of the average spectral deviation state variable and the accompany variance observation 

variable [6]. The transition matrix (Fig. 3a) shows that the mean spectral deviation value intervals, spanning the 

range of 0.63-1.28 units (blocks 3-6 on the y-axis), tends to transition into the interval of 0.84-1.1 units (block 5 

on the x-axis) while the mean value intervals spanning 0.21-0.63 units (blocks 2 and 3 on the y-axis) tend to 

transition into itself. Overall, this structure suggests that moderate and high mean spectral deviation values 

transition into high mean spectral values. On the other hand, low mean spectral values tend to transition into low 

mean spectral values. This pattern of medium and high spectral mean values transitioning into high mean spectral 

values is a distinctive characteristic of this process which is not observed in many random dynamic variables such 

as turbulent kinetic energy in fluid turbulence [7]. It is noted that land-based energy changes are not bound by any 

dynamical energy constraint, allowing for the observed spectral dynamics. 

The emission matrix has a complete mean spectral deviation value interval spanning the range of 0-1.28 units for the state 

transition variable and a complete observation variable range for variance spanning 0.0006-0.98 units. The emission matrix 

(Fig. 3b) results show that most medium to high mean spectral deviation intervals (blocks 4-6 on the y-axis) tend to emit associated 

variances in the lowest variance range spanning 0.0006-0.16 units (block 1 on the x-axis). The lowest mean spectral deviation 

interval (block 1 with an interval of 0-0.21 units) as well as the third deviation interval (block 3 with an interval of 0.42-0.63 units) 

tend to have variances spanning the first 2 blocks on the x-axis (0.0006-0.33 units). High anomalous spectral deviations tend 

to have low uncertainty or variance suggesting that when spectral deviations are large they are significant. Large 

deviations are often associated with noise, making this finding atypical but useful in the synthesis of anomalous 

spectral behavior for this random process.  

 

 

 

 

 

 

Figure 2: a) Spectral deviation values taken over a finite bandwidth for flagged anomalous spectra in the first image 

chip. b) Same spectral deviation values plotted as an image plot. c) Spectral deviation values averaged over the 

complete spectral bandwidth for each HSI anomalous spectral signal in the first image chip. d )  Bayesian recursive 

estimation of mean and variance assuming a normal distribution. Red plus signs signify the 95% confidence-based 

lower error bar and black plus signs signify the upper error bar. Blue curve is the mean spectral deviation. 
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a)                                                                                           b) 

 
 

 

 

 

 

 

 
4. Conclusions 

A Kalman filtration-based signal processing formulism is demonstrated for the characterization of anomalous spectral signals 

existing in spectral groups. It is a generator of mean spectral deviations and variance values for frequency spectral groups which are 

in turn used in the characterization of the underlying statistical spectral deviation process. The application of ANOVA and hidden 

Markov modelling are shown to be not only different ways of characterizing the underlying random process responsible 

for spectral group observations, but also are the starting point for robust predictive power. The illustrated algorithms are 

meant to be the first steps towards the construction of geo-intelligence processors operating in a full geo-intelligence 

processing pipeline for processing of data streams containing anomalies. It is conjectured that an ensemble of developed 

processors, such as these, represent a viable way for performing statistical signal modelling and characterization for 

establishing statistical priors for neural network-based processing. This is because data hungry, deep learning methods are 

often in dire need of guidance in making robust function approximations which can be furnished by the type of statistical 

processors illustrated here.  
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Figure 3: a) Transition matrix for average spectral deviation time series. The 6 -transition intervals span 0-1.28 

units with equidistant intervals of 0.21 units. b) The emission matrix for mean spectral deviation interval state and the emitted 

variance observation. It also has 6-transition intervals which span 0-1.28 units with equidistant intervals of 0.21 units and 

6-emission observation intervals which span the interval of 0.0006-0.98 units with equidistant intervals of 0.16 units. Units 

are arbitrary. 
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