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Abstract – Histopathological images are examined by pathologists to diagnose cancer. A major step in classifying nuclei as cancerous 
or non-cancerous is to detect and classify mitosis. Detecting and classifying mitosis, however, can be challenging due to its complex 
form of proliferation and high similarity to non-mitosis. Typically, pathologists use manual methods to diagnose cancer. However, it is 
a very laborious, time-consuming and costly method. Computer-aided diagnosis helps pathologists in the early detection and recognition 
of cancer and increases diagnostic precision. Many methods have been proposed over the years, but researchers have not been able to 
develop a system that provides high accuracy and reliability for a wide range of applications. This issue motivates us to develop a new 
methodology for identifying and classifying mitosis in breast histopathological images. First, mitotic-shaped cells are detected with 
YOLOv5. Both mitotic and non-mitotic cells can be detected by YOLOv5. In results of YOLOv5 diagnosis accuracy and reliability are 
reduced. After the detection process of mitotic-shaped cells with YOLOv5, fuzzy-based classifiers such as Fuzzy-based K Nearest 
Neighbor, Fuzzy Min-Max, and Fuzzy Random Forest are applied to distinguish mitotic cells from non-mitotic cells. The performance 
verification of the proposed methodology is conducted on the MITOS ICPR14 dataset in terms of Precision, Recall and F1-Score. 
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1. Introduction 

Cancer is the most dangerous disease of our age, for which there is no definitive cure until now. Cancer refers to a group 
of diseases that motivate the irrepressible increase of nuclei in the body, forming tumors. Cancer nuclei spread from the 
prime affected site to other parts of the body. Breast cancer has been the superlative popular cancer between women and a 
major reason for death globally in the last two decades. Early diagnosis of cancer reduces the risk of death. Therefore, there 
are research works conducted globally to improve the premature diagnosis of cancer [1]. Computer aided diagnoses (CAD) 
or digital pathology has become a major tool in this handle. In digital pathology, privately designed microscopes accounted 
with strong cameras are used to seize High-Power Field (HPF) images at high resolutions [2].  

Mitosis detection or count is a predominant objective parameter in the breast cancer grading and staging unlike other 
types of cancers. Mitosis is the nuclei division process in living organisms, have four major phases: prophase, metaphase, 
anaphase, and telophase [3]. The task of mitosis detection and classification with high accuracy and reliability is a challenging 
due to the following reasons: (1) mitosis are small objects with a large range of shapes and texture formats; (2) the different 
terms for tissue dyeing; and (3) image acquisition process rise the diversity of the mitosis shapes’ appearance. In the process 
of cancer grading and staging [4] the mitosis shapes’ appearance plays incisive role. The grading of cancer indicates how 
much they resemble the parent tissue. Cancer grading primarily aims at determining the aggressiveness of cancer. Cancer 
staging measures how far the disease has progressed from the primary seeming organ to other parts of the body. Mitosis 
detection is an index of the nuclei proliferation rate and hence the phase of cancer [5].  

The literature contains numerous studies on cancer diagnosis [6], specifically focusing on mitosis detection and 
classification. With the rapid progress of deep-learning models in cancer diagnosis, there have been significant advancements 
in cancer staging and grading. However, existing studies have not achieved the desired level of accuracy and reliability for 
cancer diagnosis. Consequently, there is a growing need for more effective research in this area.  
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To address this need, this study introduces a novel methodology for accurate and reliable breast cancer diagnosis. The 
proposed approach involves the detection of mitotic-shaped cells using YOLOv5 and subsequently separating them from 
non-mitotic cells using fuzzy-based classifiers. The results demonstrate that this methodology enhances both the accuracy 
and reliability of mitosis detection and classification. 

The rest part of the paper is organized as follows. Section 2 summarizes the related studies on mitotic detection. Section 
3 describes the proposed methodology. Section 4 discusses the implementation results. Finally, Section 5 presents the 
conclusions. 

 
2. Related works 

Numerous studies have explored mitosis detection and classification using deep learning and fuzzy-based techniques. 
Several existing works have been summarized below: 

Khan et al. [7] proposed SMDetector, which incorporates Feature Pyramid Network (FPN), Region Recommendation 
Network (RPN), and Region of Interest (ROI) modules for mitosis detection and classification. Their model achieved an 
overall average precision (AP) of 50.31, an average recall (AR) of 55.90, and an F1-Score of 63.88 on the ICPR14 dataset. 

Razavi et al. [8] introduced MiNuGAN, a cGAN architecture for dual mitosis and nuclei segmentation. Their approach 
achieved a mean F1-Score of 0.854 on the TUPAC16, ICPR12, and ICPR14 datasets. 

Banerjee et al. [9] employed U-Net for segmentation, YOLO for object detection, and one-class SVM for binary 
classification. Their work utilized the ICPR 2012 and Data Science Bowl 2018 datasets to train the object classification 
model. 

Yancey [10] combined faster RCNN for object detection with segmentation features from U-Net. The features from both 
streams were fused using the bilinear pooling layer, achieving an F1-Score of 0.508 on the ICPR14 dataset. 

Cayır et al. [11] proposed MITNET, a two-stage deep learning framework for mitosis classification in Whole Slide 
Images (WSI). MITNET-det is an architecture that uses CSPDarknet and PANet to extract features from nuclei images and 
fuse them together. It then proceeds to the classification stage, where isolated nuclei images are fed into MITNET-rec. 
MITNET-rec's main objective is to identify and classify instances of mitosis within whole-slide images (WSIs). They 
achieved an F1-Score of 68.7 on the publicly available MIDOG dataset and 49.0 on the ATYPIA dataset. 

Nateghi et al. [12] developed a method consisting of region of interest detection, mitosis detection using deep neural 
networks, and tumor proliferation scoring using Support Vector Machine (SVM). Their approach was evaluated on the 
TUPAC16 dataset for overall proliferation scoring performance. 

Rehman et al. [13] proposed a general method involving feature vector set preparation, weightage assignment, 
classification using SVM and Random Forest (RF), and majority voting. Their approach achieved high F1-Scores for mitosis 
detection in ICPR12, ICPR14, AMIDA13, and TUPAC16 datasets. 

Thomas and Jisha [14] utilized Fuzzy C-Means clustering for nuclei identification, followed by RF classification for 
mitosis/non-mitosis classification. Their approach attained an F1-Score of 78.0 on the ICPR14 dataset. 

Wang et al. [15] introduced the FMDet algorithm, which included Fourier-based data augmentation, pixel-level 
annotation generation, and segmentation-based mitosis detection. Their approach achieved an F1-Score of 0.77 on five 
different datasets. 

Hwang et al. [16] employed fuzzy segmentation and thresholding to distinguish mitosis candidate images from the 
background. Their approach achieved an F1-Score of 88.9 on the TUPAC16 and ICPR12 datasets. 

Lakshmanan et al. [17] proposed a supervised deep framework combining DenseNet-121 and Principal Component 
Analysis (PCA) for mitosis classification. Their approach utilized a Decision Tree (DT) classifier and achieved successful 
feature training for classification. 

Maroof et al. [18] introduced a hybrid feature space combining color, morphological, and texture features for mitosis 
and non-mitosis discrimination. Their SVM classifier outperformed the RF classifier, achieving an F1-Score of 72.07 on the 
ICPR14 dataset. 
Although deep learning and fuzzy techniques have been applied independently for mitosis detection and classification, the 
obtained results on the ICPR14 dataset are not satisfactory for accurately and reliably diagnosing breast cancer. In this paper, 
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we propose combining deep learning and fuzzy techniques to achieve high accuracy and reliability in both mitosis detection 
and classification. 

 
3. Proposed Mitosis Detection and Classification Methodology 

The overall framework of the proposed methodology is presented in Fig. 1. The proposed methodology has four main 
stages:  

1) dataset initialization, 2) preprocessing, 3) mitosis detection and 4) mitosis classification.  
In the following subsections, each stage is described.   
 

3.1. Dataset Initialization 
The most common datasets used for mitosis detection are as follows: ICPR12 [3], ICPR14 [19], TUPAC16 [20], 

MIDOG22 [21], and AMIDA13 [22]. In this study, ICPR14 dataset is selected as the dataset to carry out experiments. There 
are 1200 labeled and 496 unlabeled images in the ICPR14 dataset. Labeled images contain both mitosis and non-mitosis. 
The central pixels of the mitosis were marked by the pathologists. ICPR14 consists of multiple HPFs that differ in different 
aspects caused by unlike factors such as tissue acquisition, staining, lighting, and tissue portability. The ICPR14 dataset is 
thus the most suitable for detecting and classifying mitosis in histopathological images. 

 

 
Fig. 1: Proposed Mitosis Detection and Classification Methodology 

 
3.2. Preprocessing 

In the second stage of the methodology, preprocessing is performed on the ICPR14 dataset. The purpose of preprocessing 
is to improve the quality of the images in the dataset so that they can be analyzed more effectively. Before model training 
and feature extraction, preprocessing processes should be applied to the images in the dataset. In the scope of preprocessing, 
size, direction, color, etc. settings are made. Preprocessing allows the removal of undesired deterioration and achieves certain 
properties required for the application being studied [23].  

In the proposed methodology, we apply a color normalization technique, namely Macenko [24]. In this method, stain 
vectors are determined for each image based on the colors present. A pixel with an Optical Density (OD) value of 0 represents 
no light absorption. It is then necessary to project OD-transformed pixels onto the geodesic direction to determine the stain 
vector endpoints [25]. 
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3.3. Mitosis Detection 

The Histogram of Oriented Gradients (HOG) is used for the purpose of object detection in many image processing and 
computer vision studies. HOG decomposes an image into small, squared patches, computes a histogram of oriented gradients 
for each patch, normalizes the result using a block-wise pattern, and returns a descriptor for each patch. HOG features have 
been used as input to the YOLOv5 [26] model. The HOG features may serve as additional information or be combined with 
other features in a fusion step. 

YOLOv5 is a novel convolutional neural network (CNN) that detects objects in real-time with high accuracy [26] (Fig. 
2). This model uses a single neural network to process the entire image. At the results, mitosis and non-mitosis are detected 
and the bounding boxes for them are created. An original image applied to model is resized into 224×224 pixels. The 
coordinates of the detected mitosis are saved into a data frame. YOLOv5 consists of three important components. backbone, 
neck, and output. The backbone network is responsible for feature extraction from the input image, capturing both low-level 
and high-level features that are important for object detection. The neck component combines the extracted features and 
produces feature maps at three different scales. Finally, the output section is responsible for detecting objects based on the 
generated feature maps. 
 

 
Fig. 2: The Architecture of YOLOv5 

 
3.4. Mitosis Classification 

On the output of YOLOv5 of the proposed architecture, mitosis (TPs - green squares in Fig. 1 and Fig. 2) and non-
mitosis (FPs - blue squares in Fig. 1 and Fig. 2) are detected. This case decreases the accuracy and reliability of cancer 
diagnosis. FPs need to be decreased to increase the accuracy and reliability of detecting and classifying only real mitosis. In 
the proposed architecture and methodology three different fuzzy-based classifiers are used to remove FP mitosis. Fuzzy-
based classifier algorithms have been employed to address the challenge of false positive (FP) detection in mitosis 
identification. Fuzzy-based classifiers can be trained using labeled data to learn the subtle patterns and characteristics that 
distinguish true mitoses from other structures. By considering the uncertainty and imprecision associated with mitosis 
identification, these algorithms assign membership degrees to each candidate, allowing for a more nuanced classification 
process. By leveraging fuzzy logic principles, these classifiers can effectively reduce the occurrence of FP mitosis detections, 
improving the accuracy and reliability of automated mitosis detection systems in cancer research and diagnosis. 
We employ the following fuzzy-based classifiers: 
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a) Fuzzy Random Forest (FRF) is an ensemble method based on fuzzy decision trees. This approach combines the 
stability of multiple classifier systems, the power of randomness to increase the diversity of the trees, and the flexibility of 
fuzzy logic and fuzzy sets for imperfect data management. This algorithm is used to reduce bias in random data feature 
selection caused by associated features. Fuzzy random forest can handle imbalanced data effectively by adjusting the fuzzy 
membership degrees according to the class distribution. This ensures that the algorithm gives appropriate consideration to 
minority classes, leading to more balanced and accurate predictions. FRF, according to its assumptions, combines the 
robustness of ensemble classifiers and the power of randomness to decrease the relation between the trees and increase their 
range of them and the flexibility of fuzzy logic to deal with imperfect data [28]. 

b) Fuzzy K Nearest Neighbor (FKNN) assigns class membership to a sample vector rather than assigning the vector to 
a particular class. The advantage is that no arbitrary assignments are produced by the algorithm. The FKNN classifier finds 
the memberships of data instances into classes rather than assigning the whole class label. By adjusting the fuzziness 
parameters, such as the shape of membership functions or the degree of fuzzification, FKNN can handle data with varying 
degrees of uncertainty and imprecision. It is useful that how much its neighbors belong to a class to improve accuracy [29].  

c)  Fuzzy Min-Max (FMM) is a machine learning method that learning stage is completed just with one pass over the 
learning samples and used for classification or clustering. One of the most major properties of this approach is that most of 
the processing is related with detection and fine-tuning the boundaries of the classes [30]. In FMM, there are mainly 3 
processes: expansion process, overlap test, and contraction process.  

 
4. Implementation 

The experiments were conducted using a PC with an NVDIA RTX 4000 GPU, Intel(R) Xeon(R) W-2245 
CPU@3.90GHz and a 64GB System RAM with python programming language via Google Colab platform. MITOS ICPR 
2014 dataset was used to implement the proposed architecture and methodology.  

To evaluate the performance of the proposed methodology for mitosis detection and classification the following metrics 
are used:  
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑁𝑁𝑇𝑇𝑇𝑇

𝑁𝑁𝑇𝑇𝑇𝑇 + 𝑁𝑁𝐹𝐹𝑇𝑇
 ,                                                                     (1)              

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑁𝑁𝑇𝑇𝑇𝑇

𝑁𝑁𝑇𝑇𝑇𝑇 + 𝑁𝑁𝐹𝐹𝐹𝐹
 ,                                                                          (2)              

𝐹𝐹1 − 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2 ×
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

,                                         (3)             
 
where 𝑁𝑁𝑇𝑇𝑇𝑇 represents the number of true positives, which is recognized as mitosis and is actually the number of mitosis; 𝑁𝑁𝐹𝐹𝑇𝑇 
represents the number of false positives, which is actually the number of non-mitosis among detected mitosis; 𝑁𝑁𝐹𝐹𝐹𝐹 represents 
the number of false negatives, which is recognized as non-mitosis and is actually the number of mitosis; 𝑁𝑁𝑇𝑇𝐹𝐹 represents the 
number of true negatives, which is recognized as non-mitosis and is actually the number of non-mitosis. 
 

Table 2: Implementation results 
Methods Precision Recall F1-Score 

YOLOv5 0.818 0.757 0.79 
YOLOv5 + Fuzzy Min-Max 0.822 0.684 0.750 
YOLOv5 + Fuzzy K Nearest Neighbor 0.865 0.752 0.805 
YOLOv5 + Fuzzy Random Forest 0.895 0.848 0.873 

 
The experimental results are presented in Table 2 in terms of Precision, Recall and F1-Score. From Table 2, it can be 

indicated that YOLOv5 with fuzzy versions of K Nearest Neighbor and Random Forest significantly improves the 
classification performance compared to YOLOv5 without a classification stage. YOLOv5 only performs better than 
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YOLOv5 with a Fuzzy Min-Max classifier. When comparing the fuzzy version of K Nearest Neighbor and Random Forest, 
it can be observed that Random Forest outperforms K Nearest Neighbor. It can therefore be inferred that YOLOv5 with an 
additional classification stage can perform well in terms of classifying mitosis and Fuzzy Random Forest is the most 
appropriate classifier as an additional stage for YOLOv5.  

 
5. Conclusion 

The accurate detection and classification of mitosis are critical for cancer staging and grading. However, this task 
poses challenges due to the similarity between the shapes of nuclei and mitotic cells, often leading to the misclassification 
of nuclei as mitosis. Consequently, the reliability of cancer grade and stage analysis is compromised. To address this 
challenge, we propose a two-stage methodology for the detection and classification of mitosis in breast histopathological 
images. Our methodology begins by utilizing YOLOv5 for the initial detection of mitotic cells. Subsequently, the detected 
mitotic cells undergo classification using fuzzy classifiers, specifically Fuzzy K Nearest Neighbor, Fuzzy Min-Max, and 
Fuzzy Random Forest. Notably, the inclusion of fuzzy classifiers as an additional stage for mitotic cell classification is a 
novel contribution in the literature. 

In future research, we intend to enhance the performance of our methodology by incorporating the latest versions of 
the YOLO architecture. Additionally, we plan to release a publicly available dataset for mitosis detection, facilitating further 
research and advancements in this field. 
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