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Abstract - Wheat is a grass widely cultivated for its seed, a cereal that is a staple food around the world. However,
cereal wheat is subject to many wheat diseases, including bacterial, viral and fungal diseases, as well as parasitic
infestations. The need to use Deep Learning methods to identify automatically wheat diseases has become a
challenge. In this paper, we proposed and compared two models based on Convolutional Neural Network (CNN)
for wheat diseases detection and recognition. The convolutional layers of a CNN can be considered as matching
filters derived directly from data images (images of healthy and unhealthy wheat). CNNs thus produce a hierarchy
of visual representations optimized for our task. As a result of CNN training, a model is obtained - a set of weights
and biases - which then responds to the specific task for which it was designed. One of the main strengths of CNNs
is their ability to generalize, that is, the ability to process data never seen before. This allows a certain robustness
to the heterogeneity of the background, to the image acquisition conditions and to the intra-class variability. A
large image dataset of various wheat diseases, including healthy wheat, was used for training our models to learn,
recognize and detect diseases and/or abnormalities in wheat.
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1. Introduction

Cereal wheat is subject to many wheat diseases. The main diseases in temperate environments are as follows, in rough
order of their impact from colder to warmer climates: eyespot, stagonospora nodorum leaf spot (also known as glume leaf
spot), rust yellow or streaked, powdery mildew, septoria spot tritici (sometimes known as leaf spot), brown or leaf rust,
fusarium head blight, brown spot, and black rust. In the tropics, spotted leaf spot (also known as helminthosporium leaf
blight) is also prominent. These diseases according to the Food and Agriculture Organization of the United Nations (FAO)
cause a loss from 20 % to 40 % of world food production, constituting a major threat to food security. On the other hand, the
impact of climate change has resulted in increased changes in humidity, temperature and wind direction thus affecting wheat
yield. Sometimes these changes, like the wind, can make it easier to spread diseases like leaf rust, stem rust, and yellow rust
[1].

On the other hand, deep neural networks (DNNs) are applied in many practical problems. Thanks to their ability to learn,
based on searching for similarities between objects and their generalization, they are able to deal with problems where a very
accurate classification is required. Image recognition is one of the tasks in which DNN excel.

In the recent years, researches used deep learning methods for automatic wheat diseases identification. We established
in tablel the summary review of previous works [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. In our review study, we considered the
following research questions: (a) the problem they answered, (b) the approach used, (c) the data sources used and (d) the
obtained accuracy. We also recorded: (e) whether the authors compared their CNN-based approach with other techniques,
and (f) what was the difference in performance.
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This paper presents and compares two models for wheat diseases automatic detection and classification. We
designed our two modesl, which we named Model_1 based on CNN, and another Model_2 based on the architectures
of EfficientNetB7 [13]. Our models used transfer-learning of CNNs. Training and validation of our models were
performed on a large wheat database built in this study.

Table. 1: Summary of the literature review

Agriculture Description of the Precizion Comparizon with Bef
field problem other technigues
Identify 14 crop PlantVillage's Svubstantial margin in
species and 26 public dataset of standard benchmarks  [2]
dizeases 54,306 images of 0.994 with approaches
dizeased and (F1) AlexNet,  using hand-designed
healthy plant GoogleMNet features
leaves
Clazzify banana leaf  Dataset of 3,700 Methods using
dizeases banana disease More than artisanal [3]
images obtained 96 % (CA). functionalities are not
from PlantVillage LeNet well generalized
Datazet 0,963 (F1)
Deep learning Dataset of 87,848 Several CNN models
models for the images have been trained, [4]
detection and containing 25 Defined by with the best
diagnosis of plant  different plants in 99.53% author performance reaching
diseases a et of 58 accuracy a success rate of
distinct classes. 99.53%.
Detection of
plant diseases Identifying Rice Datazet of 300
Dizeases Using natural images of Author- [£]
Deep CNN dizeazed and defined
healthy rice 05.48% CNN-
leaves and stems, ACCUracy based N/A
for 10 common model
rice diseases
On the use of PlantVillage Better F1 scores than
transfer learning for datazet which Inception-v3 (0.93), [6]
the detection of containg 38 MobileNet (0.93),
plant dizeases classes of 54,305 DenszeNet169 (0.93)
images of sick 0.94 (F1) ResNet50
and healthy
diseases for 14
species
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13 different typez of Database created Better results than
Leaf dizeaze healthy plant and by the authors SVM M
detection leaf dizeases containing 4483 96.30%(CA)  CaffeNet
images
Recognition of corn 9270 images, 08.52% Data increase due to
diseases based on  with 6496 images  accuracy and small data size. [8]
EfficientNet by for training data 1.48% loss  EfficientN Better results than
classification of leaf and 2783 for et-hi ResNeti0 (96.76%),
images validation transfer Inception-v3
learning (93.9%), VGG16
(96.35%)
Predict the number 24,000 syathetic 91% (RFC) Area Bazed Teachnic  [9]
of tomatoes in images produced 1.15 (ABT) (66,16%
pictures by the authors (EMSE) on accuracy),

real images,  Inception, (EMSE = 13.36)
03% (EFC) BesNet

= ] -/ - ] - | °

252
(EMSE) on
synthetic
images
Fruit counting
Detection of 122 images Fast Conditional random
peppers and melons obtained from Regional  field to model visual — [10]
twio modalities: CNN with color and texture
color (RGB) and 0.83%(F1) VGEG16 characteristics (F1 =
Near-Infred model 0.80T7)
(NIR)
Identify the thistle 4,500 images at (Based on the color
in the images of 10, 20, 30 and 50 characteristics) [11]
winter wheat and m altitude Thiztle-Tool (95%)
spring barley captured by a 97,00 % DenzelNet
camera Canon (CA)
PowerShot G135
Weed
identification Pixel-cloze 301 so0il images 4% Modified
classification of and 8,430 accuracy, version of [12]
weeds and crops in segmented plant 100% the VGG-
images using a fully images, Plants detection 16 and N/A
11 CNN cover 23 different  rate for corn  transfer

weed and com and weeds  learning

2. Materials and Methods
2.1. Wheat Disease Datase

Our dataset consists of a total of 7,540 images, divided into 8 classes - 7 wheat diseases classes and one class for healthy
wheat images. The dataset englobes main diseases are as follows: stagonospora nodorum leaf spot (also known as glume leaf
spot), rust yellow or streaked, powdery mildew, septoria spot tritici (sometimes known as leaf spot), brown or leaf rust,
fusarium head blight, and loose smut. This dataset has been compiled from existing datasets namely PDDP - images datasets,
Kaggle, Google Drive - Large Wheat Diseases Classification and Dataset. Our dataset was divided as follows: 80\% for
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training models, 30\% for validation during training and we chose randomly 36 images for each class, to test the model's
performance on new images data after training. This is summarized in Table 2.

Table 2: Description of the wheat disease dataset
Leaf

Total

Yellow

Healthy Fusarium Loose  Powdery  Spetoria Stem

Head Blight  Rust Smut Mildew Leaf Blotch Rust Stripe Rust

894 1214 314
124 505 134 158 295 258 389 2252
- 4 5 8 5 7 4 5 4 36

1324 380 1727 453 575 951 909 1360 7540

2.2. Image Preprocessing
To input the image dataset into the CNN model, the images had to be the same size (height and width) and the same
format as the input image size required for each of our networks. To fit our images into the deep learning models, we
converted each image to a three-dimensional tensor, that is, a length of 224, a width of 224, and a color channel of RGB.
We used the Python Imaging Library (PIL) to do these conversions. On the other hand, EfficientNet, which uses noisy-
student [14] type weights, does not require any preprocessing of the input images. Noisy Student is a semi-supervised
learning approach that extends the idea of self-training and knowledge distillation.
2.3. Proposed Method
We proposed two methods to learn wheat disease from the training database. Each method established a model, and
used it to classify wheat images primarily into two main classes - healthy and unhealthy wheat. The unhealthy wheat
images was then classified according to their respective disease type.
2.3.1 Design of a transfer-learning model based on pre-trained models
We have chosen a number of different pre-trained CNN models to use as the basis for our transfer learning models. We
explored models such as InceptionV3 [16], VGG16 [17], VGG19 [17], EfficientNet (BO - B7) [13], and MobileNet [18]. We
performed fine-tuning, added new layers, removing some layers and freezing layers on the pre-trained base models while
doing hyperparameter searches to determine the number of layers to remove or freeze. We will only present the models that
gave the best results based on the pre-trained EfficientNetB7 models.
2.3.2 Model_1
We created a sequential CNN model as a starting point from the simple model provided on the TensorFlow and added a
few more layers to deepen the network. The summary of the model is given in Table 3. All parameters of all layers are
trainable. The number of outputs (8) in the last dense layer (Dense_3) corresponds to the number of classes in our dataset.
We also used the sigmoid activation function for the last dense layer. Our model can have several correct answers and the
sigmoid gives the probabilities for an image to belong to each of the classes, that is why we chose this one, that is to say that
an image of a wheat plant may have one or more diseases present.
2.3.3 Model_2
Noisy-student specific pre-trained weights exist for the Efficient Nets from B0 to B7, so we used the noisy-student-b7
weights to train our EfficientNetB7 model. We used the pre-trained weights from noisy-student-b7 and set all the layers so
they could be trained. We have added a pooling layer of the overall average. The last layer is a dense layer with 8 as the
number of outputs and a sigmoid activation function. The summary of the simplified model is presented in Table 4.
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Table 3: Model_1 Summary

Kernels Kernel size stride Activation Parameters

Conv2D (Input) ‘same’

MaxPooling2D - 2*2 ‘default’ - 0
Conv2D 32 3*3 ‘same’ RelU 4640
MaxPooling2D - 2*2 ‘default’ - 0
Flatten - - - - 0
Dense_1 512 = = RelU 51380736
Dropout 512 - - - 0
Dense_2 256 - - RelU 131328

Dense 3 sigmoid 2056

Total params: 51,519,208
Trainable params: 51,519,208
Non-trainable params: 0

Table 4: Model_2 Summary

Type Kernels Activation Parameters

ResNet50(base 7*7*2560 - 64097687

model)

Global Average 2560 - 0
Pooling
Dense 8 sigmoid 20488

Total params: 64,118,175
Trainable params: 63,807,448
Non-trainable params: 310,727

3. Experimental Results
3.1 Training Results
3.1.1 Model_1
The TPU training took about 45 minutes to complete the 400 epochs and achieve convergence. As shown in Figure
1-a and Figure 1-b, training resulted in unstable incremental improvement. The precision and loss of validation ceased to
have significant improvement after 300 and 175 epochs respectively. The accuracy and training loss seem to keep improving,
but we stopped the model anyway because we are interested in the validation values as they can indicate whether an overfit
or underfit has occurred. The precision and the validation loss obtained are respectively 0.7723 and 0.0793.
3.1.2 Model_2
The model took 40 epochs to converge. The TPU training took about 7 minutes. As the precision and loss graphs
below show, training had an unstable incremental improvement. The precision and loss of validation stopped improving
significantly after 15 and 10 epochs, respectively. The accuracy and validation loss achieved were 0.8696 and 0.1100
respectively. Figure 2 shows the training analysis of model_2.
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Fig. 2: Training analysis of Model_2.

3.2 Classification Results
3.2.1 Model_1

This model achieved a validation precision (CA) of 0.7723 during training. The results obtained in reported in Table
5, observations and interpretations are summarized in Table 6.

3.2.2 Model_2

This model achieved a validation precision (CA) of 0.8696 during training. The results obtained in reported in
Table 7, observations and interpretations are summarized in Table.
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Table 5: Model_1 Classification Results

Precision Recall

0.6693

Fusarium Head Blight (a)

Fl-score Validation Data Train Data

0.8470 09183 0.8812 416 894
[ LeafRust (c) BVESS 0.7663 0.7485 505 1214
0.8560 0.7985 0.8263 134 314
0.7045 0.3924 0.5041 158 410
0.5796 0.6542 0.6146 295 652
0.6699 0.8101 0.7333 258 646
0.6503 0.8843 0.7495 389 976

Micro avg 0.7093 0.7762 0.7413 2279 5252
0.7135 0.7387 0.7168 2279 5252
0.7142 0.7762 0.7376 2279 5252
0.7576 0.7811 0.7628 2279 5252

CA=0.7723

Table 6: Observations and interpretations for Model_1

Observations

Micro avg = Macro avg for recall and F1

Micro, Macro avg recall = Macro, Micro avg
precision

Class (a) has the worst precision, recall and F1
SCOTes.

CA = Micro, Macro , Weighted avg for précision

The precision is significantly lower than the recall
for classes (e), (f) and (g).

AUC-ROC significantly lower than AUC-ROC:s of
Macro avg and Micro avg.

The ROC curves for classes (c), (e}, (f) are well
below the ROC Micro avg and Macro avg curves.

intepretations
- Bias towards the most populous classes.

- The model tends to find as many positive instances
as possible rather than returning the predicted
positive instances.

- It 15 the least populated class
- Lack of more data images prevented the model from

fully learming this class during traimng
- The model has more accuracy than precision

- An indication that the model has less predictive
power for these classes but that it 15 more efficient in
predicting positives which are currently positive (than
predicted positives).

- The probability that the model ranks a randomly
chosen positive instance higher than a randomly
chosen negative instance is low for these classes.

- These classes will have sigmificantly lower
predictive accuracies at different FPR or fasle alarm
thresholds.
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Table 7: Model_2 Classification Results

Precision

Validation Data Train Data

0.7171 0.8790 0.7899 124 251
0.9010 0.8966 0.8988 416 894
0.6731 0.8970 0.7691 505 1214
0.9912 0.8433 0.9113 134 314
0.8769 0.7215 0.7917 158 410
0.8491 0.6678 0.7476 295 652
0.8188 0.8760 0.8464 258 646
0.8464 0.8072 0.8263 389 976

Micro avg 0.8040 0.8333 0.8184 2279 5252
0.8342 0.8236 0.8226 2279 5252
0.8188 0.8333 0.8196 2279 5252
0.8232 0.8366 0.8262 2279 5252

CA =0.8696

Table 8: Observations and interpretations for Model_2

Observations Interpretations

Macro, Micro, Weighted avg for recall and
precision almost equal to that of F1 scores

CA is a little higher than Micro avg, Macro ave,
Weighted avg for accuracy.

Class (d), (e), (f) has much more precision than
recall.

class (a), (c), (g) have significantly higher recall

than precision

AUC-ROC for class (c) significantly lower than all
classes and AUC-ROC averages

The ROC curves for classes (d), (f), are
bigniﬁcanﬂy lower than the ROC curves for Micro
avg and Macro avg.

- This indicates a harmonic balance between recall
and precision, 1.e. there 15 a balance between classes
and the model shows less bias towards a particular
class.

- Indication that the model 15 slightly more exact than
precise

- The model, for class (2), 1s good at selecting
positive mnstances from its positive predictions, but
fails to do the same from all instances that are
currently positive.

- For these classes, the model 15 very good at
predicting the greatest number of positive nstances
from instances that are currently positive, but 1t 1s bad
at predicting positive instances from its predictions.

- Although the probabality that the model 15 able to
rank a randomly chosen positive instance higher than
a randomly chosen negative mstance 13 high, its
performance for class (c) 15 low.

- These classes will have sigmficantly lower
predictive accuracies at different FPR or fasle alarm
thresholds.
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4. Conclusion

In this work, we have proposed two models two based on the CNN and EfficientNetB7, respectively. These models was
was able to recognize the wheat disease automatically and effectively. We used the transfer learning and fine-tuning approach
for both models.

Our models classify the wheat disease images into eight classes (seven for wheat diseases and one for healthy wheat).
We detailed the dataset images used in this study and how we processed and prepared the images for training. Our models
can correctly detect diseases in wheat, accurately and over time.
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