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Abstract - Skin cancer malignant melanoma is the deadliest type of cancer and early detection is important to improve patient prognosis. 
Recently, Deep Learning Neural Networks (DLNNs) have proven to be a powerful tool in classifying medical images for detecting 
various diseases and it has become viable to deal with skin cancer detection. In this research we propose a serverless mobile app to assist 
with skin cancer detection. This mobile app is based on the best performance of five Convolution Neural Network (CNN) models designed 
from scratch as well as four state-of-the-art architectures used for Transfer Learning (Inception v3, ResNet50v2, DenseNet, and Exception 
v2). Since the skin cancer dataset is imbalanced, we perform data augmentation. We also use the fine-tuning top layers technique for 
feature extraction on all models to improve the results. The main novelty of the proposed method is the model deployed as part of mobile 
app where the classification processes are executed locally on the mobile device. This approach will reduce the latency and improve the 
privacy of the end users compared with the cloud-based model where user needs to send images to a third-party cloud service. The 
achieved accuracy of pre-trained Inception v3 model is 99.99%. Therefore, the proposed mobile solution can serve as a reliable tool that 
can be used for melanoma detection by dermatologists and individual users. 
 
Keywords: melanoma, skin lesion, deep learning, machine learning, transfer learning, on-device inference app, mobile app, convolution 
neural networks.  
 
 
1. Introduction 

Skin cancer is the most common type of cancer in the US. Statistically, 1 out of 5 people will get skin cancer at some 
point in their life [1]. The vast majority of skin cancer deaths are due to malignant melanoma. Most skin cancers either spread 
to other parts of the body and or are fatal unless detected and treated early. In its initial stages, malignant melanoma is 
completely curable with a simple biopsy [2]. Therefore, an early detection is the best solution to improve skin cancer 
prognostic. However, if the diagnosis and treatment begin in late stages, it usually takes long time to get the results. 
Unfortunately, many people do not want to go to the doctor during the preliminary stages when it can be prevented. Thus, 
there is a need for a mHealth app – a self-examination tool for individual user with a standard camera from the smartphones 
through installation of an app on mobile device that can perform a quick, efficient, and low-cost diagnosis. 

Convolution Neural Networks (CNNs) have been applied to many fields as image recognition and object detections as 
well as in new research domains. Computer-aided systems for skin lesion diagnosis is a growing area of research. Recently, 
researchers have shown an increasing interest in developing computer-aided diagnosis systems. There are several methods 
of deep learning but the pre-trained deep learning models and handcrafted methods that are based on a deep learning approach 
already show promising results with high-precision accuracy for melanoma detection [3].  

Mobile health defined as the use of mobile devices with machine learning, is a rapidly growing field in the digital health 
sector providing healthcare support and intervention. It has the potential to reduce the cost of health care and to improve the 
well-being in numerous ways [4]. Machine Learning requires a large amount of storage and system processing which is a 
challenging for mobile applications. Many mHealth applications deploy Machine Learning model on a cloud-based server 
but this approach has some disadvantages as the time it takes for a cloud-based server to respond to a client request and the 
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privacy issues which might arise when sending sensitive medical data. Researchers in [5] presented the concept of a system 
that consists of a smartphone application available to the client (client side) and the server side of the system, consisting of 
a general-purpose server, computing server, users database, and images database.  

In this research we propose an on-device inference app to assist with skin cancer detection. The app will use on-device 
pre-trained classification model to perform classification of new data. The classification process would use a pre-trained 
CNN model using 25,331 dermoscopic images generated by the International Skin Imaging Collaboration (ISIC) [6]. As the 
dataset is small and imbalanced we implemented data augmentation to avoid overfitting.  

Our model is deployed on mobile app, where the inference process takes place. When presented with new image all 
computations are executed locally where the test images remain. This approach will reduce the latency and improve the 
privacy of the end users compared with the cloud-based model where the user needs to send images to a third-party cloud 
service. Figure 1 demonstrates the on-device inference for Skin Cancer Detection app process. 

 

 
Fig 1. On-device Machine Learning Mobile App for Skin Cancer Detection 

 
2. Application Design and Methodology 

We design an on-device Machine Learning mobile app to support the diagnosis of skin cancer using CNN based on the 
best performance of five CNNs primary based models such as Inception v3, ResNet50v2, DenseNet, and Exception v2. The 
above models represent pre-trained networks for object classification and detection over a large dataset. Training the models 
is done on the basis of Transfer Learning using a dataset of 25,331 dermoscopic images generated by the International Skin 
Imaging Collaboration (ISIC) [6]. We convert the best performance model to Core ML and TensorFlow Lite model and 
import it to the iOS and Android app using Xcode, Android Studio Integrated Development Environment. This methodology 
has many benefits namely the computation are performed on the device, the data process is handled on the user’s device, and 
the app does not rely on network connectivity to function. 

 
2.1. Convolutional Neural Networks (CNNs) 

  The Convolutional Neural Networks (CNNs) is a special type of Deep Learning Network (DNN). The architecture of 
CNNs is different from other deep learning models. There are two special aspects in the architecture of CNN, i.e., local 
connections and shared weights. CNNs exploits the local correlation using local connectivity between the neurons of near 
layers. CNNs use a special architecture which is well-adapted to classify images. This architecture makes convolution 
network fast to train so we can train many-layer networks which are exceptionally good at image classification [7]. 

 When CNNs process an image, it utilizes convolutional operations to extract useful information from its pixels. The 
input image, when passed through a convolution layer, produces set of output images, known as output feature maps. The 
output feature maps detect features such as edges and color composition variation. The next layer will detect slightly more 
complicated features, such as shapes and other geometric structures. The deeper layers the network has the more convolution 
layers learn to detect more complicated features. The final layers of the CNNs detect specific things such as cars, horse, and 
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cats. The output layer of the CNNs provides a table of numerical value which is the probability that a specific object was 
discovered in the image. 

In this research, the dataset contains skin images divided into eight categories (type of skin lesions) labels and the CNN 
learns the features of respective types. The CNN model process the input with a series of convolution, pooling and sub-
sampling layers followed by fully-connected layers. The convolution and pooling layers perform feature extraction by 
capturing typical characteristics of the images. The fully connected layers assign a probability for the input image according 
to the given features.  
 
2.2. Transfer Learning 

Presented CNN methods that use transfer learning and parameters fine-tuning for skin lesion classification are the most 
common and best-performing approaches [3]. We also adopted a similar approach using transfer learning to train CNN 
models. Transfer Learning is a Machine Learning (ML) method where a model developed for one task is reused for another 
model on different task. In recent years, Transfer Learning has gained a lot of popularity for image classification tasks 
because of reasonable training time and improved baseline and final performance. 

 In a typical image classification, the neural networks try to determine the edges in the initial level layers, shapes in the 
middle level layers and all specific features in the final layers. However, in Transfer Learning, we use the initial and middle 
level layers and only retrain the final layers [8]. Moreover, we need a lot of data to train the model but most of the time the 
size of the data is not big enough and it takes more time to train CNNs from scratch. Therefore, it is common to use pre-
trained network on a large dataset and then use it as an initialization or a fixed feature extractor for the tasks of interest [9]. 
The most common ways to use Transfer Learning are feature-extraction and fine-tuning. Feature extraction serves the 
purpose of assembling information into meaningful observations, like identifying and reducing the presence of certain edges, 
shapes, or color patterns [10]. A well-tuned feature extraction layers can identify and amplify characteristics that are relevant 
to the problem. The role of feature extraction and feature interpretation are controlled by convolutional and fully-connected 
layer.  

 
2.3. On-Device Machine Learning 

Typically, Machine Learning models deploy on Cloud-based servers. However, On-Device Machine Learning is when 
the app performs interference with models directly on a mobile device. The ML model processes input data such as images, 
text, or sound on the mobile device rather than sending those inputs to a server and all computations are executed there.  

As mobile devices become more powerful, running Machine Learning on-device has many benefits as: a) Low latency: 
the computation has happened on the device; therefore, there is no round trip to the server and no need to wait for the results 
to come back from the server to the local device. b) Privacy: with on-device Machine Learning, the data process can happen 
on the user’s device. c) Works offline: since the Machine Learning model has been deployed on the mobile device, the app 
does not rely on network connectivity to function. d) No cost: the app has been deployed on the mobile device and it does 
not need to host any additional servers or paying for cloud computers. Therefore, the app will only use the processing power 
on the device. 

There are some limitations of on-device Machine Learning because mobile devices are more restricted in terms of 
storage, memory, power consumption, and compute resources [11].  Apple’s Core ML is a framework to help integrate 
Machine Learning models into the mobile app. It is not only just a runtime environment but also a file format. This format 
will be integrated into an iOS app. The app uses Core ML APIs and user data to make predictions and to train or fine-tune 
the model [12]. The framework supports the classification of images, natural language for processing text, speech for 
converting audio to text, and identifying sounds on audio. Alternatively, we can use Core ML tools to convert other Machine 
Learning models into Core ML format and once the model deployed on a user’s device, we can use Core ML to retrain or 
fine-tune it on-device, with that user’s data.  
      TensorFlow is one of the Google’s deep learning libraries with several components: 1. Tensor is the core framework that 
every computation in TensorFlow involves tensors, which are the matrices/vectors of the n-dimensions. 2. Each value in a 
tensor shares an identical datatype or shape. 3. TensorFlow uses a graph framework to gather in all series computations that 
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it has done through the training and describe them. The graph can run on multiple GPUs, CPUs, or mobile OS.  TensorFlow 
Lite is a mobile library for deploying models on mobile, microcontrollers and other edge devices [13]. We can train a new 
model or select a pre-trained model and convert the model to a TensorFlow model with the TensorFlow Lite Converter. The 
compressed .tflite file can be deployed into a mobile or embedded device [14].  
   
3. Experiments: Dataset and Image Preprocessing 
      We build a CNN model from scratch and four Transfer Learning models based on the Inception v3, ResNet50v2, 
DenseNet, and Exception v2. Since the dataset is imbalanced and small, we apply data augmentation such as random rotation 
of 180 degrees, random brightness change, and zoom augmentation to create new images from existing ISIC dataset [6]. 
Moreover, to achieve the best performance of the training model we apply fine-tuning of parameters such as layer freezing, 
Drop Learning Rate on Plateau. The fully-connected layer is retained in the instantiated pre-trained model.  
       We use a dataset of 25,331 dermoscopic images was generated by the International Skin Imaging Collaboration (ISIC) 
[6, 15, 16]. The dataset consists of eight categories of skin lesions: Melanocytic nevi, Melanoma, Basal cell carcinoma, 
Benign keratosis-like lesions, Actinic keratoses, Squamous cell carcinoma, Dermatofibroma, and Vascular lesions (Table 1). 
All skin cancer images are in 24-bit JPEG format and EXIF tags within the images were removed. Dimensions of these 
images are inconsistent ranging from 600 × 450 to 1024 × 1024. Figure 2 shows the samples of dermoscopic images. 
 

Table 1. Dataset Skin Lesions Images 

Skin Lession Type  Abbreviation Total 
Melanocytic nevi NV 12875 
Melanoma MEL 4522 
Benign keratosis-like lesions BKL 2624 
Basal cell carcinoma BCC 3323 
Actinic keratoses AK 867 
Squamous cell carcinoma SCC 622 
Dermatofibroma DF 239 
Vascular lesions VASC 253 

 

 
Fig 2. Samples for each type of skin lesion 

 
  Each skin lesion image has information in the metadata table, which includes all the fields such as lesion identifier, 

image, age, site, sex, and cell type. The dataset is imbalanced because of unequal distribution of samples. There are 12875 
images in Melanocytic nevi. However, there are only 253 images in Vascular lesions.  
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Image data augmentation is a technique to artificially create new training data from the existing datasets. It transformed 
the images in the training dataset that belong to the same class as the original one. The transformation includes a range of 
image manipulation such as shifts, flips, zoom, and much more. We applied random rotation of 180 degrees, vertical and 
horizontal shift, vertical and horizontal flip, random brightness change, and zoom augmentation. Furthermore, images were 
resized to the input size of the model.  

 
3.1. Fine-tune Parameters 

  Fine-tuning makes small adjustments to a process to achieve the desired performance. The basic pipeline involves 
replacing the last “classifier” layer of a pre-trained network with a new randomly initialized layer for the target task of 
interest. The modified network is then fine-tuned with additional passes of appropriately tuned gradient descent on the target 
training set [17]. We use layer freezing technique to fine-tune the training. When a layer is frozen, its weighs are fixed and 
it cannot be trained. Therefore, it is common to freeze the convolutional layers of the pre-trained model and to train only the 
custom fully-connected layers. By doing this, the feature-extracting knowledge is learned and kept in the weights of the 
convolutional layers stored, but the interpretative fully-connected layers are trained to best interpret the extracted features. 

 We also utilize the important parameter, “include_top” of the Keras pre-trained models to implement the first method 
of changing pre-trained model architecture for the training. When the parameter “include_top” is set to True, the fully-
connected layer will be retained in the instantiated pre-trained model object. Therefore, the parameter, “include_top” is set 
to True to all models. 

In this research we apply the Drop Learning Rate on Plateau to drop the learning rate by a factor after no change in a 
monitored metric for a given number of epochs. The “patience” values, which are the number of epochs to wait for a change 
before dropping the learning rate is 2. We use a default learning rate of 0.01 and drop the learning rate by setting the “factor” 
to 0.1 for all models.  
 
4. Model Training and Tools 

The core model is implemented on Windows OS using Python, Keras, TensorFlow and several other popular Machine 
Learning tools and frameworks to build the mobile app such as Android Studio, Xcode IDE. The specification of the 
computer on which trainings and testing took place includes Intel(R) Core (TM) i7-9700F CPU @3.00 GHz, 48 GB installed 
RAM and NVIDIA GeForce 3060 with 12 GB of memory. 

Four state-of-the-art CNN architectures are used for Transfer Learning (Table 2). These models were pre-trained on 
ImageNet and then fine-tuned on the training set. All models followed the same setup with learning rate of 0.01 excluding 
the basic CNN model (0.001) for number of epochs - 200. Additionally, all image points outside the boundaries of the inputs 
are filled from the nearest available pixel of the input. During the training, the two final fully-connected layers of the network 
are removed, and the new dense layer is added to train the images of all models to fine-tune the model. Also, the class 
weighted cross-entropy loss is applied during the training to mitigate the data imbalance problem.    
     

Table 2. Five Convolutional Neural Network Models 

Model Input Size Number of Layers Number of Parameters 
Basic CNN Model 224 x 224 9 11,955,369 

Inception v3 299 x 299 314 21,821,225 
Xception v2 299 x 299 135 20,879,921 

DenseNet201 224 x 224 710 20,242,984 
ResNet50 v2 224 x 224 567 58,350,089 
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4.1. Metrics 
One of the main goals of an automatic skin lesion classification application is acquiring specific information and 

treatment options for a lesion, and achieving this goal depends on correct diagnosis out of multiple categories. We use 
different models (Table 2) for detecting eight categories of skin lesions (Table 1). The purpose of these experiments is 
find the best fit for our scenario. The classification report which gives us insight towards precision, recall, and F1 score 
the first step of the evaluation process. Plotting of training accuracy, validation accuracy, training loss, and validation 
loss helps us in choosing the final model. Experimental results are shown in Fig. 3. 

 

 
Fig 3. Accuracy and loss for training and validation of five models 

 
5. Model Conversion and Intergrading the Pre-trained Model  

Inception v3 model is the best model among utilized, with 99.99% accuracy and 83 for F1 score. Moreover, it achieves 
91% of precision and 95% of recall classifying Melanocytic nevi. Therefore, we use this model and convert it to both Core 
ML and TensorFlow Lite model in order to build an iOS and an Android app. 
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5.1. Core ML and TensorFlow Lite Conversions 
 Apple’s Core ML is a framework to help integrate Machine Learning models into the mobile app. We can integrate the 

trained Machine Learning models into iOS app. Figure 4 shows the process of the conversion. The pre-trained model in 
HDF5 (Hierarchical Data Formats) format will go to a Core ML converter and the output is the Core ML model format  
(mlmodel).  

                 
Fig 4. Model Conversion: Keras “.h5” to Apple Core ML “.mlmodel”       Fig 5. Model Conversion: Keras “.h5” to Google TensorFlow ML “.tflite” 

 
The TensorFlow Lite converter takes a TensorFlow model and generates a TensorFlow Lite model (an optimized 

FlatBufffer identified by the “.tflite” file extension) [18]. Figure 5 demonstrates the conversion process of the Keras model 
to the TensorFlow model. 

 
6. Skin Cancer Detector app on iOS and Android 

We use the model with the best performance from the Table 3 as a base model to convert to both “mlmodel” and “.tflife” 
in order to build iOS app and Android app to demonstrate the process of using on-device inference approach, which has 
number of benefits over cloud-based solutions. A user can either provide the photo of skin image by selecting existing photo 
or can take a new photo as an input. The photo classified is based on a probability distribution of the output. It matches with 
the labels which listed all categories of skin lesions and then displays it on the screen.  

 

 
Fig. 6. Demonstration of Skin Cancer Detection on iOS and Android Device 

 
7. Result and Analysis 

We trained five different neural networks and their difference is the number of frozen top layers for feature extraction. 
The results summarized in Table 3 show that model Inception v3 has the best performance while both Xception v2 and 
ResNet50 v2 performed quite similar. The basic CNN model has the lowest performance. Therefore, Inception v3 is chosen 
as base model for our skin cancer detection algorithm. This model is converted to Core ML and TensorFlow Lite model to 
deploy in the mobile app. 

Table 3. Results of all models with fine-tuning top layers 

Model Training 
Accuracy 

Training Loss Validation 
accuracy 

Validation Loss F1 Score 

CNN Model 0.8868 1.954 0.8865 2.051 0.02 
Inception v3 0.9999 0.0007 0.8349 1.382 0.83 
Xception v2 0.9948 0.017 0.8068 1.362 0.81 
Dense Net 0.9836 0.058 0.8068 0.857 0.81 

ResNet50 v2 0.9972 0.017 0.7223 2.311 0.72 
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8. Conclusion 
In this research we propose a mobile app to support the diagnostic of skin cancer using CNNs. Building a successful 

CNN model from scratch requires better architectures and training on large datasets interactively. Instead we utilize the 
knowledge learned in pre-trained models to design a new model. Since the pre-trained models are trained on large datasets, 
they have learned the basic features such as corners, edges etc. Therefore, to select a base model, we chose one CNN model 
from scratch and then use four state-of-the-art architectures for Transfer Learning. These are evaluated based on accuracy, 
precision, and recall of the model. We selected Inception v3 architecture with the best performance having 91% precision 
and 95% when recall classifying Melanocytic nevi.  

The results obtained from the models show that Inception v3 model achieves a performance of 99.99% accuracy and 
results comparable with results presented in literature. Our research will be extended by Mask R-CNN to solve instance 
segmentation of cancer cells in the images in order to improve the results further.  
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