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Abstract - In recent years, smart technology has become increasingly useful for monitoring honeybee colonies' health and condition in 

real time using a remote monitoring system. Due to the development of new technologies, it is possible to utilize deep learning techniques 

in order to improve the understanding of honey conditions within hives. In this study, we propose a method for automatic honey detection 

in honeycomb frames. A dataset of images of hive frames was collected and annotated by experts. We employed transfer learning by 

fine-tuning several pre-trained convolutional neural network (CNN) architectures using the image dataset. The best-performing image 

classification model was VVG19 with an accuracy of 84% and an F1-score of 84% on the test set. As demonstrated in this study, transfer 

learning can be a useful method of analysing images remotely without human intervention or physical access to remote beehives. 

Manpower requirements could be reduced and productivity could be improved, particularly in rural areas.  
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1. Introduction 
Bees play a crucial role in biodiversity since they are crucial for life's survival [1]. As pollinators, bees contribute to 

ecosystems and food security by producing 35% of agricultural production globally [2]. 

Beekeepers have raised and maintained honeybees (Apis mellifera) for thousands of years [3]. Beekeeping contributes 

to sustainable development in the agricultural and food production industries [4-6]. Beekeepers are primarily involved in 

pollination services and honey production. This includes tasks such as inducting wild swarms, splitting colonies, producing 

queens, collecting honey, and ensuring the overall health of the hive [7]. According to the European Commission (2020), the 

EU honey market is valued at $1.4 billion, managing approximately 20 million colonies of honeybees and producing 

approximately 218,000 tons of honey each year. Due to the importance of the beekeeper industry, it must be provided with 

additional resources, including providing new utilities and developing mechanisms to ensure beekeeper activities are 

maintained [8]. 

Beekeepers typically place their hives in remote fields, and to determine whether the honey is ready for harvest, they 

physically inspect the remote hive. Beekeepers must identify hives with low honey production over time. This may indicate 

a colony problem, such as a disease. Furthermore, identifying hives that produce enough honey for harvesting is crucial. This 

is because a hive already full of honey may not have enough space for the bees to utilize available nectar flows and convert 

them into honey. The term "honey bound" refers to the condition in which a hive is overflowed with honey and the queen is 

severely limited in space for egg laying. When a colony reaches this stage, or even before they are fully honey-bound, 

swarming is more likely to occur. During swarming, a single colony divides into two or more separate colonies. It is the 

beekeeper's responsibility to recognize this and split the hive into two, add a queen to the new hive, or add honey supers to 

give the bees more space to grow and produce honey [9,10]. 

Connected hives have become increasingly useful in recent years with sensors such as humidity and temperature, as well 

as cameras that can be used to continuously monitor colonies' health and conditions [11-13]. 

In this study, we propose a method for automatic honey detection in honeycomb frames using images of hives. A dataset 

of images of hive frames was collected and annotated by experts. We assessed the ability of several pre-trained convolutional 

neural network (CNN) architectures to detect frames containing honeycombs filled with honey ready for harvest. The 

performance of the proposed classification model was assessed using accuracy and F1-score metrics. The best-performing 

image classification model was VGG19 with an accuracy of 84% and an F1-score of 84%. This study shows that transfer 

learning can be a promising technique for analyzing images remotely and without human intervention or physical access to 

remote hives. This can reduce manpower needs and improve productivity, particularly in rural areas. 
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2. Method 
Figure 1 illustrates the main phases of our honey detection methodology. Detailed descriptions of the phases will be 

provided in the following subsections. The process involved the collection of a database of images, and the division of the 

data into training, validation, and testing sets. A variety of pre-trained convolutional neural network (CNN) architectures 

were trained and evaluated using training and validation data. Once the most optimal model had been selected, a fine-tuning 

process was conducted, and the model was tested on unseen data. 

  
Fig. 1: An overview of the proposed methodology for detecting honey. 

 
2.1. Data 

This study collected experimental data from an Israeli honeybee farm (Apis mellifera, the western honeybee). Data was 

gathered between August 2022 and 6 December 2022. This database contains images taken with a variety of cameras (iPhone 

11, Canon 6D, Canon R5). During image preprocessing, each hive was divided into frames. A hive frame is a structural 

component of a beehive that holds the honeycomb. The number of frames in each hive ranges from six to ten. Figure 2 shows 

an example of a hive with 10 frames. 

  

 
 

Fig. 2: Hive with 10 frames. 
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A total of 541 frames were captured. Images were taken from an upper hive box (called a honey super) placed over 

the brood area of a colony. A surplus of honey is stored and harvested in this area [14]. Figure 3 shows a frame with an 

empty honeycomb before the bees fill it with honey. Figure 4 below is an overhead view of the frame. 

 

Fig. 3: Empty honeycomb frame. 

 

Fig. 4: An overhead view of an empty honeycomb frame. 

 

A total of 541 frames were captured. Images were taken from an upper hive box (called a honey super) placed over the 

brood area of a colony. Honey for harvesting is stored in this area [14]. Figure 3 shows a frame with an empty honeycomb 

before the bees fill it with honey. Figure 4 below is an overhead view of the frame. 

 

Fig. 5: A honeycomb frame filled with honey. 

 

Figure 6 displays 3 frames from an overhead view, whose honeycombs are full of honey. As can be seen, the honeycombs 

are visible from both sides of the frame. If the bees run out of space in the honeycombs, they place beeswax in other areas 

of the hive. This can be seen in comparison to Figure 4, where the honeycomb does not extend out of the frame and is 

therefore not fully filled. 

Consequently, when examining a frame in the hive, it is possible to determine if the honeycomb in the frame is already 

containing honey (by observing the honeycomb extending out of the frame as well as the beeswax filling the frame). 
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Fig. 6: An overhead view of three frames containing honey. 

 

2.2. Data pre-processing and annotation 

Raw image data were preprocessed before being processed by deep learning models. Pre-processing involves three 

stages: cutting, labeling, and resizing the images. 

In the cutting process, each hive image was divided into frames. Since each frame in the hive could receive a different 

classification, we focused our model on a classification of a specific frame rather than the entire hive. 

The next step was to resize each image, with the goal of generating images with a size of 224x224x3. These sizes were 

necessary for the transfer learning neural network to be constructed. 

At the final stage, each image was annotated by a beekeeper expert. The beekeeper usually harvests honey from the 

frames after the bees have covered at least 75 percent of the honeycomb cells with wax. A low percentage of covered cells 

may indicate that the honey has not been dehydrated adequately and has not passed through the complete enzyme biochemical 

process [15]. 

Each honeycomb frame in our experiment was classified as follows by a beekeeper expert: 

0. Less than 75% of honeycomb cells are empty. 

1. More than 75% of honeycomb cells are covered. 

A total of 181 frames were classified as 0 and 360 frames were classified as 1. 

 
2.2. Convolutional neural network (CNN) architectures 

Deep learning is characterized by its ability to create and extract features from raw representations of data. All of this is 

done without being explicitly instructed on which features to use or how to extract them. Deep learning has been proven to 

be a powerful technique that can be applied to a wide range of vision-based tasks such as image classification and object 

detection [16]. Deep learning has been expanded to agricultural fields, including honeybee studies [17]. For instance, deep 

learning has been applied to estimate the amount of nectar that is produced in images of flowering vegetation using CNN 

models [18], to identify and count the number of honey bees by conventional networks [19], to classify honey bee comb cells 

[20], to detect pollen-bearing honey bees in hive entrance images and videos with CNN-based classifiers [21,22] and to 

detect bee diseases [23-25]. 

In the context of honey identification in hive frames, we anticipate that utilizing a convolutional neural network (CNN) 

architecture can automatically extract features from training data that can be used to classify unseen data. Consequently, 

honey identification in each frame will no longer require beekeeper assistance. 

CNN models can be constructed from scratch or from pre-trained models. When there is limited data, training CNNs for 

computer vision tasks is a common challenge [26]. Compared to building a CNN model from scratch, transfer learning can 

be a more efficient method since it requires less data and takes less computation time. In our study, transfer learning was 

preferred due to insufficient images available as inputs. Transfer learning starts with a pre-trained model and fine-tunes its 

weights using a new dataset. As a result of fine-tuning the pre-trained model on the new dataset, the model learns relevant 

patterns and relationships relevant to the specific task [26]. 
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A number of CNN architectures have been explored in this study, such as VGG19 [27], DenseNet121 [28], 

EfficientNetV2S [29], ResNet50 [30], and InceptionV3 [31]. A CNN architecture known as VGGNet was proposed in 2014 

[27]. VGGNet is known for its simplicity. The architecture is very uniform, consisting of several convolutional layers with 

small 3x3 filters, followed by maximum pooling layers and fully connected layers. The network depth is determined by the 

number of convolutional layers, VGG16 and VGG19 with 16 and 19 weight layers, respectively. 

Huang et al introduced DenseNet121 in 2016 [28]. It belongs to the DenseNet family, which stands for "Densely 

Connected Convolutional Networks". DenseNet models are popular due to their efficient parameter use, improved gradient 

flow, and state-of-the-art performance. "121" in DenseNet121 refers to the number of layers in the network. DenseNet 

consists of multiple dense blocks, each consisting of densely connected layers. Each layer is connected to the other in a feed-

forward fashion. 

EfficientNetV2S, a variant of EfficientNetV2, was proposed by Google researchers in 2021 [29]. With fewer parameters, 

EfficientNetV2S maintains high accuracy in various computer vision tasks. Compound scaling, stochastic depth, and inverse 

square root scaling are used in the architecture. 

ResNet50 is a CNN architecture proposed by Microsoft Research in 2015 [30]. ResNet50 is a variant of the ResNet 

architecture, stands for "Residual Network", and addresses the problem of vanishing gradients. ResNet50 architecture 

consists of 50 layers, including convolutional, pooling, and fully connected layers. It also includes skip connections, which 

bypass one or more layers and connect the input directly to a later layer. 

Inception-v3 was developed by Google Research and consists of several layers of convolutional and pooling operations, 

as well as auxiliary classifiers at intermediate layers. It uses a technique called "inception modules", which involves parallel 

convolutions of different sizes followed by concatenation of their output features. As compared to VGGNet, Inception 

Networks are more computationally efficient [31]. 

  
2.3. Experiment Setting 

A number of pre-trained CNN architectures have been studied under various configurations to determine the most 

effective classifier. The experiments were conducted with one Intel Core i7-10510U (16GB RAM). 

We divided the images dataset randomly into 90% training images and 10% test images. The training data was re-divided 

into 80% training and 20% validation. As part of our pre-trained model, the convolutional layer has been frozen. A fully-

connected layer has been created, with an output layer consisting of two neurons (one for each class). 

Training the model involved 100 iterations. However, we stopped the process when performance on a validation dataset 

declined to prevent overfitting. Our model was evaluated using validation loss as a stopping criterion. Losses were calculated 

using cross-entropy. 

As part of the first experiment, we examined the models of DenseNet121, InceptionV3, ResNet50, VGG19, and 

EfficientNetV2S with the default settings of each model (Dropout = 0.2, Number of neurons in middle layer=1024, activation 

function = relu, activation function in output layer = sigmoid). Since our data was unbalanced, we used weighted measures 

to ensure the results reflected the frequency of the classes. The model with the highest weighted F1-score on the validation 

set was selected. To improve the performance of the best model, a fine-tuning process was undertaken. Several configurations 

were evaluated. We tested the combination of different optimizers, different dropout rates and different learning rates. 

Additionally, in the fully-connected middle layer, we modified the number of neurons. The model with the highest weighted 

F1-score on the validation set and the lowest loss score was selected. 

In the final step, once the best model has been selected, we test the final model using the test set. 

 

3. Results 
We employed various CNN architectures and evaluated their performance in validation set using the following metrics: 

accuracy, weighted precision, weighted recall, and weighted F1-score. The VGG19 model achieved the highest scores among 

all other models as shown in Table 1. The VGG19 model was identified as the top-performing model with accuracy of 86% 

and a weighted average F1-score of 86%. 
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Table 1: Performance of classifiers 

Model Accuracy Recall Precision F1-score 

VGG19 0.86 0.86 0.86 0.86 

DenseNet121 0.85 0.85 0.86 0.85 

EfficientNetV2S 0.84 0.84 0.85 0.84 

InceptionV3 0.81 0.81 0.81 0.81 

ResNet50 0.79 0.79 0.82 0.77 

 

As VGG19 produced the best results, the model was fine-tuned using several configurations. Table 2 presents the 

top five models with the highest F1-score in the validation set. Models 1 and 5 had the highest F1 scores, whereas model 

5 had a lower loss. Therefore, model 5 was selected as the best model. 

 
Table 2: Fine-tuning classifiers' performance  

Model 

number 

Number of 

neurons 
Dropout Learning rate Accuracy Recall Precision F1-score Loss 

1 64 0.2 0.005 0.88 0.88 0.88 0.88 0.61 

2 64 0.2 0.00001 0.87 0.87 0.87 0.86 0.542 

3 64 0.5 0.00001 0.87 0.87 0.87 0.87 0.45 

4 128 0.1 0.005 0.87 0.87 0.87 0.87 0.66 

5 128 0.5 0.00001 0.89 0.89 0.89 0.89 0.55 

 

In Figure 7, a learning curve has been provided for the average accuracy and loss during training and validation 

epochs. As depicted, training and validation accuracy displayed an upward trend with rapid improvement during the 

initial training stages, while progress slowed down during the later stages. The model's accuracy is increasing steadily, 

which indicates it is learning and performing well. Overfitting was prevented by terminating the training process when 

validation accuracy decreased. Both training and testing losses decreased significantly in the early stages. Similarly to 

the validation accuracy curve, the training process was terminated to prevent overfitting. 

 

 
Fig. 7:  Training and validation accuracy and loss for best classifier. 

 

For the purpose of evaluating our classifier's ability to generalize unseen images, we saved 10% of the data (55 

images) and applied our best VGG19 model to the samples. Model accuracy was 84%, weighted recall was 84%, 

precision was 85%, and F1-score was 84%.  
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3. Conclusion 
In this paper, we propose a method for automatic honey detection in honeycomb frames. For this task, we collected RGB 

RGB images of hive frames with expert annotations. The dataset was used for evaluation purposes. Using transfer learning, 

learning, several pre-trained deep convolutional neural network architectures were compared for fine tuning. VGG19 

achieved an overall accuracy of 84% in classifying 55 previously unseen images from the test set. The results indicate that 

that transfer learning is a promising method for identifying honey in hive frames with high accuracy. 

In the future, a greater number of images of hives will be collected and added to the image database. 
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