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Abstract - Image-guided percutaneous insertion is widely applied in lung biopsy surgeries. Traditional procedure used rigid 
needle, which may lead to post-operation complications such as pneumothorax and hemothorax. Recent research have 
investigated the application of curvature-controllable steerable bevel-tip needle with pre-surgery path planning to overcome 
this problem. This work focuses on improving the RRT* algorithm (in terms of path length, search time and redundant 
random nodes) for the pre-operation path planning based on a constrained search environment. An RRT*M algorithm is 
proposed via probability distribution of the generation of random nodes around the ideal path connecting the start and goal 
points within a constraint region while avoiding the obstacles in the simulated human respiratory system. The performance 
of the proposed algorithm is compared with informed RRT* algorithm based on a similar 2D environment. The result 
indicated the potential of the proposed algorithm for lung biopsy path planning in a 3D virtual environment based on the 
human anatomy.  
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1. Introduction 

In the aftermath of the COVID-19 pandemic, diseases associated with the human lung and respiratory systems have 
attracted much attention. Among lung diseases, cancer had the highest incidence and mortality rate [1]. The key to improve 
the survival rate of cancer patients is screening and early diagnosis of the disease. In traditional clinical settings, CT-guided 
lung biopsy is commonly used to extract the tumour for malignant diagnosis. The process uses a percutaneous needle and is 
noted for its accuracy which normally ranges between 90.0% to 96.7% [2]. This technique is the gold standard for the early 
detection of lung cancer and the procedure is currently performed manually. Suggestions to improve the procedure include 
the use of flexible needles to avoid unnecessary damage to surrounding tissues [3] and the use of robots. These improvements 
require pre-surgery path planning of the bevel-tip needle in human tissues.  

The RRT* algorithm is one of the more popular approaches used in path planning. However, the classical RRT* 
algorithm still have many areas that can be improved, including 1) the generation of many redundant nodes during the search 
for a feasible path through obstacles; 2) the selection of relevant random nodes to generate a valid path that will not pass 
through obstacles. These issues will increase the computation time. Solutions to shorten the search time may compromise 
the path length and planning success rates. Many enhancements to the RRT* algorithm [4-6] have been proposed in recent 
years, aiming to optimize the search performance with higher computational efficiency. These improvements revolve around 
producing more centralized random nodes and reducing random redundancy via more centralized distributions in a constraint 
region of the global environment.  

This paper presents an improved path planner, RRT*M, for lung biopsy. RRT*M algorithm provides feasible paths in 
the simulated human respiratory environment with shorter length, faster convergence and less redundant points via 
employing a normally distributed random generator and producing the random nodes within a preselected rectangular region 
admitting feasible paths. Notably, the constrained region can be selected by medical doctors in real clinical pre-surgery 
procedure. The algorithm aims to improve the search efficiency to find the shortest path. The performance of RRT*M 
algorithm is evaluated via the comparisons with the existing RRT* [7] in the simulated human respiratory 2D environment 
generated from CT scans, in which irregular shapes of bones are used as obstacles. Moreover, the compassion with informed 
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RRT* is conducted in the environment presented in [4]. The result shows that RRT*M algorithm is comparatively more 
superior in terms of path length, search time and redundant points. 

 
2. The RRT*M algorithm  

The original RRT* algorithm has already been modified for the lung biopsy in our previous work [7]. The RRT*M is 
named with M since the boundary of the constraint search region can move along with the generation of random nodes 
towards the goal points. In general, the RRT*M includes the three main changes: 

(1) A rectangular constraint region is introduced to refine the search and reduce the redundancy. Notably, we assume 
that the employed constraint region includes a feasible path.  

(2) The planner employs a normally distributed generator such that the random nodes will distribute more compactly 
around the ideal straight path connecting the start and goal points.  

(3) The boundary of the constraint region can move along with the generation of the random nodes towards the goal 
point. The backwards search of the random points is avoided in this treatment and the planner only samples the nodes towards 
to the goal point to assist the growth of the feasible path.   

 
2.1. Obstacles in lung biopsy 

In lung biopsy, the main obstacle that needs to be considered are the bones in the upper body, which include the rib 
cage and the spinal cord. Other obstacles such as major blood vessels can be included if needed. 

Prior to the surgical operation, the patient must undertake a CT scan. The scan will give a 3D view of the anatomy of 
the upper body. The locations and geometries of the bones were obtained from the CT scan. It is common to separate the 3D 
view into three 2D views like those used in engineering drawings. These are the top view, front view, and side view. Figures 
1 and 2 show the bone (i.e. obstacles) in the side view and front view respectively. The side view is normally used by the 
surgeon for path planning. In the side view, where only the cross section of the bone can be seen. Figure 1 shows that the 
cross section of the bone simplified with circles, which resembles ellipse due to the aspect ratio. The front and side views 
used by the surgeon contain the planes that pass through the tumour. 

The surgeon plans for the manual biopsy operation by searching for a suitable path for the needle using the side view. 
The first step is to confirm a confined region where there exists at least one possible path for the needle to be inserted from 
outside the body to the target tumour within the lung. Due to the shape of the CT scan, the constraint search is mostly 
rectangular in shape and oriented at an angle.  Also, the rectangle is more computationally efficient than other shapes. The 
RRT*M algorithm will be described using the side view assuming that the surgeon has specified this constraint search region.  

 
Fig. 1: Side view of the bone in the CT scan.                                         Fig. 2: Top view of bone in the CT scan. 

 
After the constraint search area has been identified, the goal of the path planning algorithm is to search for an optimal 

path to navigate the obstacles within the constraint region. The most common criterion for optimization is the path length. 
The efficiency of the search algorithm can be measured by the time needed to find a valid path. The RRT*M algorithm aims 
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to find the shortest path with a higher search efficiency. The modification will be examined in three aspects of improvement: 
search time, path length and the number of redundant nodes under certain conditions. 

 
2.2. Analysis of the rectangular constraint region  

In [4], Gammel et al. employed an elliptical constraint search region to reduce the search time, path length and 
redundant nodes. However, the constraint search region specified by the surgeon in the 2D side view is mostly rectangular 

in shape and oriented at an angle 𝜃𝜃. The use of the rectangular constraint search region is investigated in our algorithm. 
     (a)                                                                                                          (b) 

Fig. 3: Illustration of the RRT*M in the side view. (a) An example of RRT*M in the side view. (b) The principle of the 
constraint region in RRT*M. 

Figure 3 shows the constraint search region within the global search region. The global coordinate is illustrated in Figure 
3(a) and will be denoted by the capital letter (𝑋𝑋,𝑌𝑌). The global coordinates are provided by the CT image processing 
software. The local coordinate system (denoted by (𝑥𝑥,𝑦𝑦)) is used for the constraint search region. The start and goal points 
of the needle is shown in Figure 3(b). The midpoint of the line joining the start and goal points is defined as the origin of the 
local coordinate system. The lower left corner of the constraint region is used as a referenced point for the transformation 
between the local and global coordinate systems. The random points (𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) are generated inside the constraint 
rectangle region with respect to the origin of the local coordinate system using: 

 
𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 2𝑎𝑎 + 𝑋𝑋 − 𝑎𝑎,                                                                   (1a) 
𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 2𝑏𝑏 + 𝑌𝑌 − 𝑏𝑏,                                                                   (1b) 

 
where 2𝑎𝑎, 2𝑏𝑏 are the length and width of the constraint rectangle region, respectively, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 stands for the uniform random 
number generator, 𝑋𝑋,𝑌𝑌 are the global coordinates of the origin of the constrained region. Note the inclined angle 𝜃𝜃 is 
defined as 
 

                 𝜃𝜃 =𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑌𝑌−𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑋𝑋−𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�.                                                                       (2) 
 

The global coordinate of the random points inside the constraint rectangle are obtained using: 
 

   [𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ]=[𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃)   −𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃)  𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃)   (𝜃𝜃)  ]�𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 � + [𝑋𝑋 𝑌𝑌 ].                                                      
(3) 

 
Figure 4 illustrates the generation of a valid node. The subfunction 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝜒𝜒,𝑂𝑂) in Figure 4 

employs the equation (3) to generate the global coordinate of the random points within the constraint region. The 
algorithm will then select the node in the search tree that is nearest to the random point and calculate the distance 
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between them. The nearest random point will become a new node if the distance is shorter than the prespecified 
step length 𝑆𝑆. Otherwise, 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 will be a point in the direction of 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 such that the distance is 𝑆𝑆.  

 
 

Algorithm 1: Generation of 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 
Input: 𝜒𝜒, 𝑇𝑇,𝑂𝑂, 𝑆𝑆 
Output: 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 
1: 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝜒𝜒,𝑂𝑂) 
2: 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑇𝑇) 
3: if 𝑔𝑔𝑔𝑔𝑔𝑔_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑋𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑) ≤  𝑆𝑆 
4:   𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟; 
5: else 
6:   𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑆𝑆) 
7: end if 
8: Return 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 

Fig. 4: The pseudo algorithm for the random node generation in RRT*M. 
2.3. Normally distributed search nodes  
Instead of using the uniform random generator for both the x and y coordinates, the normal distribution can make the 

random nodes more compact and closely distributed around the assumed ideal straight line connecting the start and goal 
points. This involves the generation of the random nodes as follow: 

 
𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑙𝑙,                                                                                 (4a) 

𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 �1
2

,𝜎𝜎� ∗ 𝑤𝑤,                                                                      (4b) 
 

where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 stands for a random number from 0 to 1, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 �1
2

,𝜎𝜎� stands for a random number following normal 

distribution, of which the mean equals 1
2
, deviation equals 𝜎𝜎. A mean value of 1

2
 is imposed such that the random nodes will 

distribute around the line 𝑦𝑦 = 1
2
𝑤𝑤, which equally divides the global search region in the y-direction. Afterwards, 

(𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) are substituted into the equation (3) to obtain the global coordinate of random nodes. The value of 𝜎𝜎 
can be adjusted based on the complexity and location of the obstacles. In an environment with less considered obstacles, a 
small 𝜎𝜎 (for example, 𝜎𝜎 = 0.25) can be assigned. In an environment with more obstacles, a larger value of 𝜎𝜎 is expected so 
that the random points are spread over wider region to facilitate the search.   

The normally distributed search nodes can be generated by combining equations (1) and (4): 
 

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 2𝑎𝑎 + 𝑋𝑋 − 𝑎𝑎,                                                                    (5a) 
𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0,𝜎𝜎)�  ∗ 𝑏𝑏 + 𝑌𝑌,                                                           (5b) 

 
where 2𝑎𝑎, 2𝑏𝑏 are the length and width of the constraint search area respectively, 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0,𝜎𝜎)) is employed to 
restrict the random number within [−1,1]. 
 

2.4 Dynamic search boundaries 
As the feasible path extends towards the target point, it may be more cost effective to focus the search on the target. 

This concept of forward searching is explored by a dynamic constraint search region, i.e., the search region will become 
smaller and move towards the target. Figure 5 illustrates the concept of the moving boundary, where the left boundary keeps 
approaching as the path develops towards the target.  This forward generation of random nodes can reduce the computation 
power of cost comparisons of line 3 in Figure 4. 

The local coordinate of the random nodes can be determined by: 
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𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 2𝑎𝑎 + 𝑥𝑥 − 𝑎𝑎 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑆𝑆,                                                          (6a) 

                                               𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0,𝜎𝜎)�  ∗ 𝑏𝑏 + 𝑦𝑦,                                                           (6b) 
 
where 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the time that random nodes have been generated, 𝑆𝑆 is the step length. The global coordinate can be 
obtained via substituting (𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) into the equation (3).   

The step length function 𝑆𝑆 can be further investigated according to the search environment. In our experiments, the 
moving boundary is designed to stop at the line 𝑥𝑥 = 𝑋𝑋𝑚𝑚 in local coordinates. The step length is then defined by the following 
formula 

𝑆𝑆 =
𝑋𝑋𝑚𝑚 − (𝑋𝑋 − 𝑎𝑎)

𝑛𝑛
, 

 
where n denotes the number of the new nodes 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛, 𝑋𝑋 is the midpoint, 𝑎𝑎 is one half of the width of the constraint region and 
𝑋𝑋𝑚𝑚 is the goal position of the moving boundary. Note 𝑆𝑆 can be further investigated to facilitate a non-constant speed moving 
boundary based on the environment.  

(a)                                                                                                          (b) 
Fig. 5: Illustration of RRT*M with moving boundaries. (a) An example of the moving boundary. (b) The principle of the moving 

boundary treatment. 
 

3. Results and comparisons  
All path planning were executed on a 2.60GHz Inter core i7-10750H processor with 16GB RAM. 
 
3.1 Path planning in the side-view and top view environments 
The performances RRT*M algorithm with and without moving boundaries were first investigated and compared with 

the RRT* in [7] using realistic obstacles in the human anatomy. The global configuration environment was obtained from 
the CT scans of a human subject and segmented into side and top views with obstacles shown in Figures 1 and 2. The start 
and goal points in both views are listed in Table 1. 

Table 1: Start and goal settings for simulations. 
Environment  Start point  Goal point  

Side view (50,1000) (782,1153) 

Top view (300,300) (400,700) 

The investigation first used the side view. The modified RRT* presented in [7], and RRT*-M with and without moving 
boundaries, were each executed 100 times with different numbers of total random nodes 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (denoted by 𝑛𝑛 varying 
between 300 and 2000). For each algorithm, the shortest search time to find the first valid path in the 100 trials was recorded. 
The average path length (without smoothing) generated for all 100 trails was determined. Let 𝑘𝑘 denote the points on the 
feasible path. Then the number of redundant points is 𝑛𝑛 − 𝑘𝑘. The required nodes to facilitate a feasible path are also recorded.  
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The process was then repeated using the top view. The results of the average value of the 100 trials with 𝑛𝑛 = 2000 are 
summarized in Table 2. The findings indicated that the RRT*-M algorithm outperform the RRT* in both search environments 
in terms of search time, path length, redundant points, and valid nodes for tree branching. Notably, the RRT*-M algorithm 

with moving boundaries showed good performance in the top view environment. With limited number of random nodes, 
RRT* algorithm in [7] cannot always converge, whereas the success rate of RRT*-M algorithm is around 99%. Comparison 
of the side and top views indicated that the RRT*-M with moving boundaries can result in slightly longer search time. Hence 
the effectiveness of the moving boundaries could depend on the obstacles and this will need further investigation. 

    (a)                                                   (b)                                                        (c)                                                   (d) 
                                                          (e)                                                                                                      (f) 

Fig. 6: Comparison between RRT* and RRT*M in the side view. (a) Search tree of RRT*. (b) Path of RRT*. (c) Search tree of 
RRT*M without moving boundary. (d) Path of RRT*M without moving boundary. (e) Search tree of RRT*M with moving boundary. 

(f) Path of RRT*M with moving boundary. 
 

 
Table 2: Comparisons of results RRT*M with and without moving boundaries with RRT* [7]. 

 Algorithm Search time (𝑠𝑠) Path length (𝑚𝑚𝑚𝑚) Redundant points Required 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 

Side view 

RRT* 2.11 994.50 430.34 957.16 

RRT*M (without 

moving boundary) 
0.17 787.51 38.51 125.23 

RRT*M (with 

moving boundary) 
0.29 788.64 34.86 206.02 

Top view RRT* 0.72 531.10 919.23 1048.77 
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RRT*M (without 

moving boundary) 
1.12 475.75 632.17 861.88 

RRT*M (with 

moving boundary) 
0.87 474.32 549.35 723.94 

 

(a)                                                          (b)                                                      (c)                                                      (d) 
      (e)                                                                                                          (f) 

Fig. 7: Comparison between RRT* and RRT*M in the top view. (a) Search tree of RRT*. (b) Path of RRT*. (c) Search tree of RRT* 
without moving boundary. (d) Path of RRT*M without moving boundary. (e) Search tree of RRT*M with moving boundary. 

 (f) Path of RRT*M with moving boundary. 
 

3.2 Comparisons of RRT*M and informed RRT*[4] 
 The RRT*M with moving boundary was also compared with the informed RRT* algorithm using the environment 

with obstacles presented in [4]. The configuration space is set to [0, 290.5] × [0, 290.5] (𝑚𝑚𝑚𝑚). The start and goal point are 
(94.59, 145.25) and (195.94, 145.25). The obstacle in Figure 8(a)(b) is a square block with length  37.16𝑚𝑚𝑚𝑚 centered at 
(145.25, 145.25). Our algorithm was executed 100 times. The best path length obtained from informed RRT*M is 115.00 
𝑚𝑚𝑚𝑚 while the result of the informed RRT*M in [4] is 112.52 𝑚𝑚𝑚𝑚. Although RRT*M gave a slightly longer path, the search 
time is only 0.31𝑠𝑠, which is much shorter than 5𝑠𝑠 needed by informed RRT presented in [4]. The possible reason of the 
different path length may be due to the variation in the environment. With the Bezier curve smoothing (see more details in 
[7]), the final path can be refined to  112.58 𝑚𝑚𝑚𝑚 with computation time of 2.17𝑠𝑠, which is still shorter than 5𝑠𝑠. The RRT*M 
algorithm is also tested with narrow opening environment in [4] and proves to generate a successful path (see Figure 8(c)).  

(a)                                                         (b)                                                             (c) 
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Fig. 8: A result of RRT*M in the environment [4] with road-blocking squares. (a) Search trees of RRT*M. (b) Initial path of RRT*M. 
(c) An example of the RRT*M finding a successful path in the narrow opening environment [4]. 

 
4. Conclusion 

In this paper, we proposed an RRT*M for pre-surgery lung biopsy path planning. The constraint environment is 
identified by the surgeon during pre-operation procedure. Based on defined constraint environment, the algorithm 
incorporated normal distribution probability function to better generate the random points and moving boundary to facilitate 
the forward search. The performances of the RRT*M algorithm were compared in the 2D simulated human respiratory 
environment with the RRT* algorithm of [7]. It was also compared with the informed RRT* algorithm in [4].  

Results and comparisons suggested that the RRT*M is a promising method capable of producing a shorter path with 
faster convergence. The performance demonstrates the potential applications of the algorithm in real-time lung biopsy 
surgeries using realistic virtual environment resembling the human anatomy. Nevertheless, we find that RRT*M algorithm 
can be further improved. Potential improvements include the investigation of the speed of the moving boundary.  
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