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Abstract - This study explores the implementation of artificial intelligence for process monitoring within smart factories, particularly 

under the Factory 4.0 paradigm. It proposes an approach centered on a data-centric model for digital twins, enhanced by the application 

of deep learning methodologies utilizing LSTM models to forecast the melt cushion parameter—a crucial indicator of process stability 

in injection molding. The methodical framework unfolds in stages, beginning with the proposition of the digital twin architecture, 

followed by the deployment of LSTM networks trained on historical datasets. Following training, the model integrates smoothly into the 

digital twin ecosystem to provide predictive analytics and decision-making support. In the experimental phase, a hybrid strategy is 

adopted, combining edge and cloud computing for data acquisition and simulation. Core elements of the methodology include architecture 

validation, establishment of communication protocols, creation of offline model conditions, integration of the digital twin without 

disruption, and utilization of edge computing for real-time predictive analysis during simulations. This approach offers a comprehensive 

solution to the challenges of process monitoring in smart factories, facilitating enhanced operational efficiency and performance 

optimization. 
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1. Introduction 
In the dynamic landscape of Industry 4.0, the fusion of Internet of Things (IoT) technologies with advanced digital 

concepts has given rise to the Smart Industry paradigm [1]. At the heart of this revolution lies the concept of Digital Twins, 

offering a virtual mirror of physical systems for real-time monitoring, analysis, and optimization [2]. This article embarks 

on an exploration of the transformative impact of Digital Twins in the realm of injection molding, elucidating its benefits, 

challenges, and innovative applications.  

Implementing Digital Twins in injection molding holds immense promise, offering a myriad of benefits. By leveraging 

real-time data analytics, manufacturers can optimize process parameters, enhance product quality, minimize downtime, and 

reduce costs [3]. However, realizing these benefits necessitates overcoming significant challenges. 

Primary among the challenges is the accurate representation of intricate physical systems within the virtual domain. 

Modern approaches employ sophisticated modeling techniques and data-driven algorithms to bridge this gap effectively. 

Furthermore, integrating Digital Twin solutions with the diverse IoT infrastructure, including edge computing and cloud 

management, presents present a significant challenge [4]. 

This article offers a substantial contribution to the field, encapsulated in three primary points: 

 Innovative Digital Twin Architecture: It introduces a novel architecture for digital twins tailored specifically for injection 

molding processes. This architecture serves as a foundation for effective process monitoring and control. 

 Deep Learning-Based Prediction Model: The integration of a deep learning model, particularly utilizing LSTM networks, 

represents a significant advancement. By training on offline data, this model facilitates the accurate prediction of critical 

parameters, such as the melt cushion parameter, enhancing process stability. 

 Hybrid Edge-Cloud Computing Approach: The adoption of a hybrid approach, combining edge and cloud computing, 

marks a departure from traditional methodologies. This approach optimizes data acquisition and simulation, ensuring 

efficient real-time monitoring and decision-making capabilities within the manufacturing environment. 

mailto:a.azmani@uae.ac.ma


 

 

 

 

 

 

CIST 171-2 

The paper is structured into three main sections. Firstly, it outlines the overarching concept of digital twins and their various 

layers within the realm of injection molding. Secondly, it discusses the implementation of an LSTM model, detailing its 

training offline using real datasets. Finally, it presents proposed experiments leveraging edge computing and cloud resources. 

 

2. Scope of study and literature review  
2.1. Basic overview of Injection molding process 

 The Injection molding is an industrial technique, involves injecting plastic material into a mold cavity under high 

pressure, which can range from hundreds to thousands of bars [5]. Once injected, the plastic cools and solidifies within the 

mold cavity, taking the shape of the mold and producing a specific plastic product [6]. Figure 1 illustrates the five main 

stages of the standard production cycle. 

 

 

 

 

 

 
Fig. 1: Main steps of injection molding process. 

 

Fig. 2: Structural Overview of an Injection Molding Machine 

 

 To carry out the manufacturing process, injection molding is employed, utilizing a machine that comprises several 

components as indicated on the figure 2. These include a hopper for feeding the raw plastic material, a heating unit consisting 

of a barrel, screw, and heating resistances to melt the material, and an injection unit responsible for injecting the molten 

material into the mold cavity. Additionally, the machine features a clamping unit to securely hold the mold halves together 

during the injection and cooling phases [7]. Furthermore, the machine is equipped with controls to regulate temperature, 

pressure, and other parameters, ensuring the production of high-quality parts. The clamping Unit [8] is responsible for 

holding the fixed and the moved side of the mold together under pressure during the injection and cooling process. It consists 

of a mold, which is mounted on a fixed platen, and a movable platen which is connected typically to a hydraulic system. The 

clamping unit plays a crucial role in maintaining the mold closed during injection, ensuring the precision and quality of the 

molded parts. In contrast, the Injection Unit involves a screw mechanism that pushes the molten material through a heated 

barrel and into the mold under high pressure [9]. 
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2.2. Digital twin concept 
 Digital Twin plays a crucial role in the Fourth Industrial Revolution by integrating information technology with 

operational technology, thereby linking the preparatory production stage with real production to create new value [10]. The 

Digital Twin concept model comprises three main components [11] as indicated on figure 3: Physical products in real space, 

virtual products in virtual space, and the data and information connections between these physical and virtual spaces. 

Essentially, a Digital Twin is a digital replication of a real physical production system. It is used for system optimization, 

monitoring, diagnostics, and prognostics by integrating artificial intelligence, machine learning, and software analytics with 

large volumes of data from physical systems. The Digital Twin model comprises five essential components: sensors and 

physical assets from the physical system, integration technology, data, analytics, and responsive actions [12]. The data 

encompasses enterprise, operational, and environmental information collected by sensors distributed throughout the physical 

system. These sensors facilitate real-time, bidirectional communication between the physical and virtual systems via 

integration technology, which includes communication interfaces. The Digital Twin then utilizes analytics techniques to 

process the data for defined purposes, providing responsive actions based on simulation results to the physical assets. 

Fig. 3: The five dimensions of Digital Twin framework 
 

 A Digital Twin makes the operations of individual machines and interconnected systems visible to authorized 

personnel in areas like manufacturing, procurement, and logistics [13]. It allows manufacturers to monitor system 

performance through the manufacturing execution system. Using analytics techniques such as what-if and predictive analysis, 

a Digital Twin simulates real-time conditions and predicts future states, enabling manufacturers to visualize processes, 

compare options, and collaborate across different sections 

 
2.3. Long short term memory 

 LSTM (Long Short-Term Memory) is proposed to enhance the short-term memory capacity of recurrent neural 

networks (RNNs) by incorporating long-term memory states, commonly referred to as cell states [14]. Figure 4 illustrates 

the structure of an LSTM cell, which comprises input, output, and forget gates. Initially, the LSTM cell initiates with a forget 

gate, tasked with either retaining or discarding the prior cell state information, ct-1. he decision to forget or retain information 

is determined by processing the input data, xt, and the previous hidden state, ht-1, through a sigmoid activation function, 

yielding an output value, ft, is between [0,1], as shown in formula (1) and (2). 
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𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓) 

(1) 

𝜎(𝑥) =
𝑒𝑥

𝑒𝑥  + 1
 

(2) 

 

Where W stands for the weight matrices of the gates, and 𝑏 represents the bias vectors.  

Fig. 4: Internal structure of LSTM cell [15] 

 

Following this, the input gate initiates the generation of a new memory state, gt, by feeding xt and ht-1 into 

the tanh activation function, as in (3) and (4). Simultaneously, the input gate determines which portions of the 

candidate memory state will be retained, creating an input state, it, as in (5). Next, the updated state of the memory 

cell, ct, is archived as indicated in equation (6) 
𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑥𝑡 + 𝑊𝑔ℎℎ𝑡−1 + 𝑏𝑔) (3) 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥  + 𝑒−𝑥  
 

(4) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖) (5) 

𝑔(𝑡) + 𝑓(𝑡) (6) 

Ultimately, the updated hidden state is generated by the output gate. ht, derived from the newly updated 

memory cell state and the output state, ot, as in (7) and (8) 
 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜) (7) 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑐𝑡) 𝑜𝑡  (8) 

2.4. Related works 

 Numerous studies, including Y. Liau et al. (2018) [16], have introduced frameworks for applying the Digital Twin 

concept to the injection molding process, from mold making to final production. Traditionally, mold design, mold making, 

and the injection process have been managed separately. However, to thrive in the current industrial revolution, these stages 

must be interconnected, enabling real-time communication and adjustments. The Digital Twin creates a virtual model that 

interacts bidirectionally with the physical process, enhancing efficiency, quality, and responsiveness by leveraging real-time 

data and predictive analytics. Zhiyong Wang et al. (2021) [17] explored the Digital Twin technology in the injection molding 

industry. They described an integrated industrial Internet architecture involving intelligent equipment, production lines, and 

factories. The study focused on key technologies like injection molding control systems and MES-based management, 

establishing a smart factory architecture. Its feasibility was verified through industrial applications, and prospects for an 
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intelligent manufacturing cloud platform were discussed. Sara Nasiri et al. (2024) [18] focused on Digital Twin (DT) 

modeling for smart injection molding, emphasizing the need for interconnected stages in the process. They detailed the 

technology required to build DTs for each stage, enabling automation and data collection. Their approach includes fault 

detection, 3D printing, and system integration for predictive manufacturing. F. J. Lacueva-Perez et al. (2012) [19] introduced 

a cloud-based Digital Twin for injection molding. It employs AI to control process parameters and predict part quality in real 

time. Validated in industrial settings, his approach successfully detects faulty products but faces challenges with traditional 

Cloud-centric IoT approaches, such as network issues and high data transfer costs. Pascal Bibow et al. (2020) [20] developed 

a model-driven approach for Digital Twins (DTs) in injection molding, automating processes and data collection. Their 

method supports customizations and streamlines development using a reference architecture. They evaluated this approach 

with an injection molding machine DT, optimizing parameters between cycles to improve efficiency. Overall, their approach 

enhances machine use by systematically engineering reactive DTs. Based on the literature review, two main gaps were 

identified: 

 Limited research has focused on implementing LSTM prediction for process stability linked with Digital Twins. 

 There is a scarcity of studies that have utilized Digital Twins to analyze melt cushion parameters. 

These gaps have motivated our paper to address these shortcomings in the existing literature. 

 

3. Implementation and methodology 
3.1. Methodology 

 The proposed approach in the figure 5 leverages the Digital Twin concept and an LSTM network to predict process 

stability, focusing on the Melt Cushion Parameter in injection molding. The physical system emits real-time data, which is 

extracted and sent to the cloud via edge computing. Communication uses OPC UA (Open Platform Communications Unified 

Architecture) between the injection molding machine and the edge, and MQTT (Message Queuing Telemetry Transport) 

between the edge and the cloud. Data is stored and processed in a local cloud system, offering services such as historical 

data access and model configuration updates. A digital shadow preprocesses real-time data and feeds it into a trained LSTM 

model to predict future states. Based on these predictions, the system suggests potential actions to adjust or stop the machine, 

which are then validated by an adjuster before implementation. In this concept, we are focusing only on proposing actions 

for recommendation to the adjuster, who validates the actions before any implementation on the physical system. This  

integrated approach aims to enhance the stability and quality of the injection molding process through advanced monitoring 

and predictive analytics, focusing on actionable recommendations rather than automatic adjustments. 

Fig. 5: Architectural Framework of the Proposed Digital Twin Concept 
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3.2. Simulation  
 To simulate the working process of the digital twin, we used two edge computers with Raspberry Pi; one as the server 

and two communication protocols (OPC-UA and MQTT). The first edge computer is configured to emulate an injection 

molding process, fed with real data from an actual injection molding machine. This computer simulates the operation by 

sending data to the second edge computer. The second edge computer is responsible for transmitting the collected data to the 

cloud. In the cloud, the LSM model is trained and makes predictions, providing the next Melt Cushion value. This prediction 

allows the adjuster to make any necessary configurations and monitor the stability of the process. The simulation architecture 

is illustrated on the fig 6.  

 
Fig. 6: Key Components of the Simulation Architecture 

4. Result and discussion 
 During the simulation, 6000 observations of the Melt cushion parameter were gathered from a real injection molding 

machine, specifically an Arburg GMBH machine with a capacity of 150T. These data were then transferred to the initial 

computing edge, which emulates the operation of the actual press. The data transmission occurs in accordance with the real 

production cycle, which spans 32 seconds. At the end of each 32-second cycle, the initial edge forwards the collected values 

to the secondary edge, acting as an intermediary between the injection molding process and the cloud infrastructure. The 

cloud environment houses an LSTM model along with real-time data acquired from the machine. Prior to integration into 

the digital shadow system, the LSTM model underwent training using 20% of the dataset in offline mode to enable predictive 

capabilities. Table 1 illustrates the training and tuning phases of the model, highlighting the superior performance achieved 

in Tune 4 compared to other configurations. 

 The table 1 outlines the hyperparameters and performance metrics of LSTM models across different tuning iterations. 

In all iterations, the model comprised of two LSTM layers. In Tune1, Tune2, and Tune3, each LSTM layer consisted of 50 

units, while in Tune4, the second layer had 100 units. The optimizer utilized across all iterations was Adam, except for 
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Tune4, where SGD was employed. Various activation functions were tested, with Relu being used in Tune1, Tune3, and 

Tune4, and tangh in Tune2. Epoch numbers varied across the iterations, with Tune2 utilizing 50 epochs while others utilized 

100 epochs. Batch sizes also varied, with Tune1 employing a batch size of 8, Tune2 a batch size of 1, and Tune4 and Tune4 

both utilizing a batch size of 32. Regarding model performance, R2 values indicate the goodness of fit, with higher values 

indicating better performance. Across the training and test sets, R2 values ranged from approximately 0.0575 to 0.7796. 

Mean Squared Error (MSE) and Mean Absolute Error (MAE) were also assessed. Lower values of MSE and MAE are 

indicative of better model performance. Throughout the tuning process, there were fluctuations in these metrics, suggesting 

varying degrees of model accuracy across different hyperparameter configurations. 

The main findings of this research can be summarized as follows: 

 Utilizing an LSTM model to model the function of injection molding, enabling prediction of the Melt cushion parameter. 

 Development of a Digital Twin architecture, facilitating simulation of real communication between the physical and 

virtual system. 

 Integration of the trained LSTM model into the Digital Twin setup, enabling real-time predictions based on data acquired 

from the physical computing edge. 

These findings highlight the efficacy of Digital Twin technology in injection molding. By linking the virtual and physical 

worlds, Digital Twins enable predictive insights and performance optimization for the injection process. This facilitates 

proactive adjustments and enhancements, leading to improved operational efficiency. 

 

Fig. 7: Prediction of Melt Cushion (left) and Hyperparameter Optimization (Table1) 
             

5. Conclusion 
This paper outlines a framework for Digital Twin implementation in injection molding, covering physical systems, cloud 

integration, communication, AI with LSTM, and interface access. Simulations demonstrate real-time communication 

between predictive values and physical systems. However, the paper does not address the final loop of the Digital Twin, 

which involves executing actions on the physical systems directly from the Digital Twin. This aspect of the research presents 

a prospective avenue for further exploration, such as the application of optimization models like reinforcement learning or 

genetic algorithms. Exploring this perspective could open up new avenues for research and development in the future. 
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Table 1: LSTM Model Hyperparameters Tuning 
Parameter and hyper parameter Tune1 Tune2 Tune3 Tune4 

Number of LSTM layers 2 2 2 2 

Number of LSTM unit by layer 50 50 50 100 

Optimizer Adam Adam Adam SGD 

Activation function Relu tangh Relu Relu 

Epoch number 100 100 50 100 

Batch size 8 1 32 32 

Training  

R2 0.7394 0.7796 0.6863 0.091 

MSE 0.0056 0.0051 0.0071 0.0208 

MAE 0.0524 0.0496 0.0583 0.1138 

Test  

R2 0.7178 0.7567 0.6812 0.0575 

MSE 0.005 0.0040 0.0058 0.0174 

MAE 0.050 0.0482 0.0548 0.1072 
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