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Abstract – This paper proposes a novel approach for fault detection in an electro-hydrostatic actuation (EHA) system, focusing on 
detecting system leakage. Bayesian optimization is integrated directly within a neural network framework to refine the tuning of 
hyperparameters. This new approach enhances the network's capability to classify faults with greater accuracy. To detect faults 
effectively, we utilize a polyscale complexity measure known as variance fractal dimension (VFD), which extracts critical features from 
the signal data. These features are fed into the Bayesian-optimized neural network, forming an effective fault detection model. We 
compare the performance of our Bayesian-optimized neural network against traditional classification methods, including support vector 
machines, decision trees, and random forests. The results demonstrate that our approach not only improves fault detection accuracy but 
also outperforms these conventional methods. This establishes its potential as a reliable technique for fault detection in hydraulically 
actuated systems. 
 
Keywords: Electro-hydrostatic actuation system, fault detection, internal leakage, Bayesian optimization, artificial neural network, 
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1. Introduction 

Hydraulic systems are crucial in many industries because they can manage heavy loads and provide precise control in 
robotics and manufacturing [1,2]. Electro-hydrostatic actuation (EHA) systems play a vital role in combining the benefits of 
hydraulic power with the efficiency of electric actuation. As EHA systems become increasingly essential to the functionality 
and performance of hydraulic systems, the need for effective fault detection techniques for EHA systems becomes essential. 
Ensuring the reliability and operational continuity of EHA systems through advanced fault detection is, therefore, important 
to preventing costly downtime and maintaining system efficiency.  One significant problem in the EHA systems is internal 
actuator leakage through high-pressure seals between cylinder chambers. Detecting this leakage is difficult without 
disassembling the system. Therefore, monitoring the system's performance using available signals and signal processing 
methods is beneficial for the timely detection of leakage fault [3]. Previous research has explored various methods for fault 
detection in hydraulic systems. A convolutional neural network was applied to diagnose faults in hydraulic pumps in [4]. In 
[5], a multiscale analysis of experimental data was employed for internal leakage detection in an EHA system. A 
comprehensive review of different fault detection techniques employing signal processing algorithms was detailed in [6].  

Signal processing algorithms are important in fault detection because they help extract important features from raw data 
representing the signals. These features are then used as inputs for different machine learning classifiers like artificial neural 
networks, support vector machines, random forests, and decision trees to identify faults effectively [7]. The common feature 
extraction methods for time series data includes monoscale and multiscale methods. Polyscale complexity measures, such as 
the length and variance fractal dimension (VFD), are useful in analysing self-affine signals with long-range dependence, a 
concept developed by Kinsner in 1994 [8]. Polyscale analysis offers a more effective approach by simultaneously considering 
data from multiple scales, making it particularly suitable for self-affine signals. These measures have found wide applications 
across various fields like machine learning, image processing, natural language processing, and computer vision. 
        Artificial neural networks (ANNs) have become an integral part of modern engineering and are essential for monitoring 
and controlling hydraulic systems effectively [9]. One of the key challenges in ANNs is the precise tuning of their 
hyperparameters. Hyperparameters like learning rate, the number of layers, batch size, and activation functions significantly 



CIST 172-2 

influence the performance of the machine learning models. The process of selecting the optimal hyperparameters is non-
trivial. The common approaches often involve a combination of expert knowledge and heuristic search techniques like grid 
search or random search. Bayesian optimization is a useful strategy for optimizing hyperparameters in neural networks. It 
can be beneficial when dealing with high-dimensional spaces or when evaluations of the objective function, like training 
ANNs, are computationally expensive [10]. This method uses a probabilistic model to predict the performance of the 
classifiers under different configurations and iteratively updates the model based on actual performance outcomes. 
          Motivated by the above discussion, this paper suggests a novel method for fault classification in EHA systems using 
a Bayesian-optimized ANN. In doing this, a feature extraction method is developed based on VFD to be employed in the 
structure of neural networks. Features are extracted from the pressures in both the cap and rod sides of the chambers. Thus, 
recognizing the critical role of hyperparameters in the performance of ANNs, we employ Bayesian optimization for tuning 
hyperparameters. This approach efficiently enhances the ANN’s ability to classify faults in EHA systems. 

 
2. Overview of the Electro-hydrostatic Actuator 
         This study is built upon the novel energy-efficient EHA system designed by Costa and Sepehri [11]. Figure 1 illustrates 
the schematic of the hydraulic circuit. This system utilizes a bidirectional pump controlled by a servomotor to drive an 
asymmetric cylinder connected to a backhoe arm. The position of the cylinder rod is monitored using an incremental encoder, 
and the backhoe arm is subjected to varying loads, as shown in Fig. 1. The control input for this system is the voltage supplied 
to the servo motor governing the bidirectional pump. This pump directs flow to either side of the actuator based on the 
servomotor's operation, leading to pressure buildup. The pressure differential across the cylinder determines the exerted 
force. Pressure signals are crucial not only for controlling cylinder motion but also for condition monitoring, as is the focus 
of this paper. Therefore, denoising these pressure signals is also important for effective system control and health monitoring.  
        The data acquisition system for this EHA setup is built around a Raspberry Pi model 4 [12]. The test rig incorporates a 
mechanism to emulate internal leakage within the actuator chambers. This is achieved by regulating an orifice connecting 
both sides of the cylinder. Initially, the orifice is entirely closed, simulating a healthy (non-leaking) actuator. Subsequently, 
the orifice is opened progressively to represent varying degrees of leakage.  
 

 
Fig. 1: Experimental setup. 



CIST 172-3 

        A dataset containing 48 signals was employed in this paper. These signals originated from the experimental EHA 
system and are categorized into two classes: healthy and faulty. The faulty signals exhibited various degrees of internal 
leakage within the actuator. These leakage levels are classified into three distinct categories: small (S), medium (M), and 
high (H). The objective of this study is to develop a method for discriminating between healthy and faulty actuator signals. 
Therefore, the three leakage levels within the faulty category were collectively considered as a single 'faulty' class for the 
classification task. The actuator was tested under three load conditions: no load (N), medium load (M), and high load (H). 
The experiments used both open-loop and closed-loop controls, using step and joystick inputs. For easy reference, each 
dataset has a unique five-letter code. The first letter (O or C) indicates open-loop or closed-loop control. The second letter 
(N, M or H) represents the load level. The third letter (N, S, M or H) shows the leakage level. Finally, the last two letters 
(Jo or St) signify joystick or step input (see Table 1). The dataset ONNSt is specifically plotted. This dataset represents the 
open-loop system with no load and no leakage subjected to a step input for 50 seconds. Figure 2 illustrates the input, position, 
velocity, leakage, and pressure signals for the ONNSt dataset.  
  

Table 1: Summary of abbreviation used for the datasets. 
Operating condition Description Abbreviation 

System mode Closed-loop velocity control C 
Open-loop velocity control O 

Input mode Joystick input Jo 
Step input St 

 
Load mode 

No load N 
Medium load M 

High load H 
 

Leakage level 
No leakage N 

Small leakage S 
Medium leakage M 

High leakage H 
 

 
Fig. 2: Typical test results for dataset ONNSt. (a) Input signal 𝑢𝑢; (b) Position 𝑥𝑥𝑝𝑝; (c) Velocity, �̇�𝑥𝑝𝑝; (d) Leakage level; (e) Measured 

pressure, 𝑃𝑃𝐴𝐴; (f) Measured pressure, 𝑃𝑃𝐵𝐵. 
 
3. Fractal Complexity Measure 
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Relevant features from the collected data are extracted and employed in an ANN for fault detection. The variance fractal 
dimension (VFD) method is utilized to extract features suitable for fault detection in the actuator signals. The VFD method 
is a well-established tool for analyzing complex time series, particularly those exhibiting self-affine properties [8]. Notably, 
self-affine time series display a characteristic power-law relationship between their variance and time increments as follows 
[8] 

 
                                     𝑉𝑉𝑉𝑉𝑉𝑉[𝑦𝑦(𝑡𝑡𝑟𝑟) − 𝑦𝑦(𝑡𝑡𝑠𝑠)] ∼ |𝑡𝑡𝑟𝑟 − 𝑡𝑡𝑠𝑠|2𝐻𝐻                                                                                 (1) 

 
where 𝑦𝑦(∙) is a discrete sample of a time series sampled at time 𝑡𝑡. Taking the logarithm of both sides of equations and 
simplifying, the Hurst exponent (H) can be derived as follows 

 
                                               𝐻𝐻 = 1

2
lim
△𝑡𝑡→0

log[𝑉𝑉𝑉𝑉𝑟𝑟[△𝑦𝑦]]
log[△𝑡𝑡]

                                                                                                (2) 
 

       The Hurst exponent allows for the evaluation of the VFD through the following expression 
 

                                                          𝐷𝐷𝜎𝜎 = 𝐸𝐸 + 1 −𝐻𝐻                                                                                               (3) 
              

for a time series with a single independent variable, 𝐻𝐻 ∈ [0, 1], 𝐸𝐸 = 1, and 𝐷𝐷𝜎𝜎 ∈ [1,2]. 
Unlike traditional monoscale analysis, polyscale analysis examines the signal across various scales simultaneously, 

utilizing volume elements (referred to as "vels"). To initiate the analysis, we first define the vels. We employ a mixed-size 
selection strategy as follows 

 

                                       𝑛𝑛𝑘𝑘 = ⌊2
𝑘𝑘+5
4 ⌋,   𝑘𝑘 = 1,2,⋯ ,35                                                                                               (4) 

 
where ⌊•⌋, is the floor function. The above 35 vel sizes is considered to obtain the VFD. We compute the variance of each 
subsequence, 𝑉𝑉𝑘𝑘,𝑚𝑚, for the corresponding vel size 𝑛𝑛𝑘𝑘 in Eq. (4) as 

 
                                          𝑉𝑉𝑘𝑘,𝑚𝑚 = 1

𝐽𝐽𝑘𝑘−1
[∑𝐽𝐽𝑘𝑘𝑗𝑗=1 (𝑦𝑦[𝑚𝑚 + 𝑗𝑗𝑛𝑛𝑘𝑘] − 𝑦𝑦[𝑚𝑚 + (𝑗𝑗 − 1)𝑛𝑛𝑘𝑘])2                                                 (5) 

                                                                   −
1
𝐽𝐽𝑘𝑘

(𝑦𝑦[𝑚𝑚 + 𝑗𝑗𝑛𝑛𝑘𝑘] − 𝑦𝑦[𝑚𝑚 + (𝑗𝑗 − 1)𝑛𝑛𝑘𝑘])2] 

 
where 𝑚𝑚 = 1,2,⋯ ,𝑛𝑛𝑘𝑘 ∈ ℕ and 𝐽𝐽𝑘𝑘 is the number of vels of size 𝑛𝑛𝑘𝑘 in the subsequences of differences and is defined as  
 

                                                             𝐽𝐽𝑘𝑘 = ⌊𝑁𝑁𝐸𝐸−𝑛𝑛𝑘𝑘
𝑛𝑛𝑘𝑘

⌋                                                                                                    (6) 
 

where 𝑁𝑁𝐸𝐸  represents the number of samples in the entire extracted signals. If we take the average of the subsequences as 
 

                                                         𝑉𝑉𝑘𝑘,𝑉𝑉𝑎𝑎𝑎𝑎 = 1
𝑛𝑛𝑘𝑘
𝑉𝑉𝑘𝑘,𝑚𝑚                                                                                                 (7) 

 
for each scale 𝑛𝑛𝑘𝑘, we have the pairs (log2(𝑛𝑛𝑘𝑘), log2(𝑉𝑉𝑘𝑘,𝑉𝑉𝑎𝑎𝑎𝑎)). To obtain the VFD, we use a robust linear regression technique 
called iteratively reweighted least squares (IRLS) [13]  for line fitting  

 
                                                       𝐷𝐷𝜎𝜎 = 2 −𝐻𝐻 = 2 − 1

2
𝑠𝑠△                                                                                       (8) 

 
where 𝑠𝑠△ denotes the slope of the line. Accurate calculation of the VFD necessitates careful data pre-processing. This 
includes removing outliers and saturation points from the log-log plot values. Techniques like IRLS can be employed to 
mitigate the influence of outliers and improve the robustness of the VFD calculation. 
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4. Neural Network Architecture  
        The proposed ANN for the fault classification of the EHA accepts two inputs as features extracted from the EHA, which 
are pre-processed and normalized for optimal neural network performance. The output layer provides a probability over 2 
classes, indicating the probability of each class being the correct classification of the input. Training is conducted over 50 
epochs with a validation split of 20% used to monitor and prevent overtraining on the training dataset. Datasets can be 
summarized as  
 

                         𝐷𝐷 = {(𝑥𝑥1
(𝑖𝑖), 𝑥𝑥2

(𝑖𝑖),𝑦𝑦(𝑖𝑖))|𝑥𝑥1
(𝑖𝑖), 𝑥𝑥2

(𝑖𝑖) ∈ ℝ,𝑦𝑦(𝑖𝑖) ∈ {0,1}}                                                                (9) 
 

 where 𝑦𝑦(𝑖𝑖) represents the label for sample 𝑖𝑖, where 𝑖𝑖 = 1,2, … , 𝑀𝑀, and 𝑀𝑀 is the number of samples. 𝑥𝑥1
(𝑖𝑖) and 𝑥𝑥2

(𝑖𝑖) are the 
two extracted features from pressure signals 𝑃𝑃𝐴𝐴 and 𝑃𝑃𝐵𝐵, respectively. The dataset is labelled based on the third letter of each 
file’s name, mapping to one of the two classes: healthy and faulty signals. We only use the no leakage and small leakage 
datasets for our training and test the neural network on the rest of the datasets. 
         A stochastic gradient descent (SGD) optimization method is applied for optimizing of the loss function in the ANN 
[14]. Instead of computing the gradient of the loss function over the whole dataset, SGD estimates the gradient based on a 
subset of the data, known as a minibatch. This makes SGD much faster for large datasets. Smaller batch sizes result in noisier 
gradients because they are based on less data. Therefore, the choice of appropriate batch size affects computational efficiency. 
Larger batch sizes can lead to faster convergence in terms of epochs because the gradient estimates are less noisy and more 
representative of the entire data set. However, it might require more computational resources per epoch. The binary cross-
entropy is also used as the loss function, which can be defined as  
 

                                            L(𝑦𝑦, 𝑝𝑝) = −(𝑦𝑦 ∙ log(𝑝𝑝) + (1 − 𝑦𝑦) ∙ log (1 − 𝑝𝑝))                                                         (10) 
  
where 𝑦𝑦 represents the true label of the signal, indicating its health status. Here, 0 signifies a healthy signal, while 1 denotes 
a faulty one. 𝑝𝑝  is the predicted probability of the class with label 1, as output by the model, and log is the natural logarithm.  
 
4.1. Structure of the Layers 
        Figure 3 shows the structure of the neural network. Each neuron in the first layer computes a weighted sum of the inputs 
plus a bias and then applies an activation function. For neuron 𝑖𝑖 in the first hidden layer, the output ℎ𝑖𝑖

(1) is  
 
                                     ℎ𝑖𝑖

(1) = 𝑓𝑓 �∑2𝑗𝑗=1 𝑊𝑊𝑖𝑖𝑗𝑗
(1)𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖

(1)�                                                                               (11) 
 

where 𝑊𝑊𝑖𝑖𝑗𝑗
(1) is the weight from input 𝑗𝑗 to neuron 𝑖𝑖 in layer 1, 𝑥𝑥𝑗𝑗 is the 𝑗𝑗th input feature, 𝑏𝑏𝑖𝑖

(1) is the bias for neuron 𝑖𝑖 in layer 
1, and 𝑓𝑓 is the activation function. Similar to layer 1, each neuron in the second layer computes a weighted sum of the outputs 
from the previous layer, adds a bias, and then applies the activation function. For neuron 𝑘𝑘 in this layer, the output ℎ𝑘𝑘

(2) is  
 

                                       ℎ𝑘𝑘
(2) = 𝑔𝑔 �∑128𝑖𝑖=1 𝑊𝑊𝑘𝑘𝑖𝑖

(2)ℎ𝑖𝑖
(1) + 𝑏𝑏𝑘𝑘

(2)�                                                                               (12) 
 

where 𝑊𝑊𝑘𝑘𝑖𝑖
(2) is the weight from neuron 𝑖𝑖 in layer 1 to neuron 𝑘𝑘 in layer 2, ℎ𝑖𝑖

(1) is the output of neuron 𝑖𝑖 in layer 1, 𝑏𝑏𝑘𝑘
(2) is the 

bias for neuron 𝑘𝑘 in layer 2, and 𝑔𝑔 is the activation function. For the neuron in the output layer, the output ℎ𝑚𝑚
(3) is  

 
                            ℎ(3) = 𝑠𝑠 �∑64𝑘𝑘=1 𝑊𝑊𝑘𝑘

(3)ℎ𝑘𝑘
(2) + 𝑏𝑏(3)�                                                                             (13) 

where 𝑊𝑊𝑚𝑚𝑘𝑘
(3) is the weight from neuron 𝑘𝑘 in layer 2 to the single neuron in the last layer, ℎ𝑘𝑘

(2) is the output of neuron 𝑘𝑘 in 
layer 2, 𝑏𝑏(3) is the bias for the single neuron in layer 3, and 𝑠𝑠 is sigmoid function.  
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Fig.  3: Schematic representation of the proposed neural network. 

 
4.2. Bayesian Optimization  
        Bayesian optimization is an important method for tuning hyperparameters in machine learning models [15]. In the 
context of the neural network, Bayesian optimization operates by constructing a probabilistic model, typically a Gaussian 
process, to estimate the function and then iteratively selecting the next set of hyperparameters based on an acquisition 
function that balances exploration and exploitation.  
        Bayesian optimization was used here to define a hyperparameter search space that considers three key parameters: 
learning rate, batch size, and activation functions in hidden layers. The learning rate, a critical factor in the convergence and 
performance of the training process, was varied within a range from 0.01 to 0.1. The batch size, dictating the number of 
samples processed before the model is updated, was considered within an integer range from 2 to 18. Finally, the type of 
activation function used in the hidden layers was also optimized, with options including; rectified linear unit (ReLU), 
hyperbolic tangent, and sigmoid activation functions. We employed gp_minimize from the skopt library in Python for 
Bayesian optimization. A maximum of 50 evaluations of the objective function is set to balance the exploration of the 
hyperparameter space with computational efficiency. Using Bayesian optimization, we successfully identified the most 
effective hyperparameters for our neural network model. The optimal learning rate was 𝜂𝜂 = 0.0862. The batch size was 
optimized to 12. Furthermore, the activation function was established as ReLU. A five-fold cross-validation was also 
employed on the dataset to show the model's performance. Table 2 reports the results from the Bayesian optimization process. 

 
Table 2: Summary of weighted averaged results for 5-fold cross validation for Bayesian-optimized neural network. 

Fold Accuracy Precision Recall F1-score 
Fold 1 93% 93% 93% 93% 
Fold 2 93% 93% 93% 93% 
Fold 3 97% 98% 97% 97% 
Fold 4 97% 98% 97% 97% 
Fold 5 93% 100% 93% 96% 

Average 94.6% 96.4% 94.6% 95.2% 
To evaluate the performance of Bayesian optimization, the results are compared across four different cases. First, an ANN 
is considered without the application of Bayesian optimization for hyperparameter tuning. In this case, the learning rate is 
set to 𝜂𝜂 = 0.01, and the activation function in the hidden layer is ReLU. Additionally, three other classification methods are 
considered: support vector machine (SVM), random forest, and decision tree. A summary of the results is reported in 
Table 3. All classification algorithms have been implemented in Python.  
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Table 3: Summary of weighted averaged results from 5-fold cross-validation of common classification methods for fault detection. 
Criteria ANN without 

Bayesian 
SVM Random forest Decision tree 

Accuracy 91.6% 93.2% 92.4% 84% 
Precision 95.6% 94% 95.6% 96.6% 

Recall  91.6% 93.2% 92.4% 84% 
F1-score 93.2% 93.4% 93.4% 88.2% 

 
5. Discussion of Results 
        This study introduced a novel fault detection model using Bayesian optimization within a neural network. The 
incorporation of Bayesian optimization allowed for fine-tuning of the ANN hyperparameters. It significantly enhanced the 
model's performance in classifying faults, as compared to traditional methods such as support vector machines, decision 
trees, and random forests. The superior performance of the Bayesian-optimized ANN can be due to its ability to optimize 
learning rate, activation functions in hidden layers, and batch sizes, which are critical in adapting to the hidden patterns of 
signal data from the EHA system. 
        The analysis also highlighted two particularly useful features for fault detection: the VFD of pressures in two sides of 
the hydraulic cylinder. These features were key in achieving high classification accuracy, proving cost-effective compared 
to other features such as velocity and position sensors. This finding is very important for practical applications, as it suggests 
a pathway toward fault detection with fewer sensors without sacrificing performance. 
        In this research, the exploration of hyperparameters was confined to learning rate, activation functions, and batch size. 
However, future studies could expand on this by considering other significant parameters such as the number of layers and 
the number of neurons in each layer, which might further enhance the model's accuracy, while reducing its complexity. 
Additionally, while the VFD proved to be an effective feature for fault detection, integrating additional features could 
potentially unveil more complex fault patterns and improve the performance of fault detection under varying operational 
conditions. 
 
6. Conclusion  

 The use of Bayesian optimization in neural networks presents a promising advancement in fault detection for EHA 
systems. Using polyscale-based feature extraction and hyperparameter tuning enhance the accuracy of the fault detection 
method. Further research will explore additional hyperparameters and integrate more features to classify different levels of 
fault, which can be more beneficial in industrial applications.  

 
References 
[1] Bradley Heinrichs, Nariman Sepehri, and A.B. Thornton-Trump, “Position-based Impedance Control of an Industrial 

Hydraulic,” IEEE Control Systems Magazine, vol. 17, no. 1, pp. 46-52, 1997. DOI: 10.1109/37.569715. 
[2] Ali Maddahi, Nariman Sepehri, and Witold Kinsner, “Fractional-order Control of Hydraulically Powered Actuators: 

Controller Design and Experimental Validation,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 2, pp. 796-
807, 2019. DOI: 10.1109/TMECH.2019.2894105. 

[3] Hongjiang Cui, Ying Guan,Huayue Chen, and Wu Deng, “A Novel Advancing Signal Processing Method Based on 
Coupled Multi-Stable Stochastic Resonance for Fault Detection,” Applied Science, vol. 11, no. 12, 2021. DOI: 
10.3390/app11125385. 

[4] Jiyu Yan, Huijie Zhu, Xiaoqiang Yang, Youhui Cao, and Lifu Shao, “Research on Fault Diagnosis of Hydraulic Pump 
Using Convolutional Neural Network,” Journal of Vibroengineering, vol. 18, no. 8, pp. 5141-5152, 2016. DOI: 
10.21595/jve.2016.16956. 

[5] Ali Maddahi, Witold Kinsner, Nariman Sepehri, “Internal Leakage Detection in Electrohydrostatic Actuators Using 
Multiscale Analysis of Experimental Data,” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 12, 
pp. 1-14, 2016, DOI: 10.1109/TIM.2016.2608446. 

[6] Lei Zhufeng, Qin Lvjun, Wu Xiaodong, Jin Wen, and Wang Caixia, “Research on Fault Diagnosis Method of Electro-
Hydrostatic Actuator,” Shock and Vibration, pp. 1-9, 2021. DOI: 10.1155/2021/6688420. 

 



CIST 172-8 

[7] Kunpeng Zhu, Jerry Ying Hsi Fuh, Xin Lin, “Metal-Based Additive Manufacturing Condition Monitoring: A Review on 
Machine Learning Based Approaches,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 509-520, 2017. 
DOI: 10.1109/TMECH.2016.2620987. 

[8] Witold Kinsner, “A Robust Variance Complexity Measure for Stochastic Self-affine Processes,” in Proc. 18th IEEE 
International Conference on Cognitive Informatics & Cognitive Computing, ICCI*CC19, Polytechnic University of 
Milan, Milan, Italy; pp. 75-82, July 2019. DOI: 10.1109/ICCICC46617.2019.9146065. 

[9] Grzegorz Filo, “Artificial Intelligence Methods in Hydraulic System Design,” Energies 2023, vol. 16, no. 8, DOI: 
10.3390/en16083320.  

[10] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, 
and Prediction. Springer, 2009 (2nd ed.), 767 pages, {ISBN-13:.{0387848570-978  

[11] Gustavo Koury Costa and Nariman Sepehri, “Four-quadrant analysis and system design for single-rod hydrostatic 
actuators,” Journal of Dynamic Systems, Measurement, and Control, vol. 141, no. 2, 021011 (15 pages), 2019. DOI: 
10.1115/1.4041382. 

[12] Amirreza Mirbeygi Moghaddam, “Fault Detection and Fault-tolerant Control of Single-rod Electrohydrostatic Actuated 
System,” M.Sc. Thesis. Winnipeg, Manitoba, Canada: University of Manitoba, Department of Mechanical Engineering, 
2021, 135 pages. 

[13] Paul W. Holland and Roy.E. Welsch, “Robust Regression Using Iteratively Reweighted Least-squares,” 
Communications in Statistics: Theory and Methods, vol. 6, no. 1, pp. 13-827, 1977. DOI: 10.1080/03610927708827533. 

[14] Quoc Tran-Dinh and Marten van Dijk, “Gradient Descent-Type Methods: Background and Simple Unified Convergence 
Analysis, ” arXiv:2212.09413 [math.OC], (24 pages), 2022. DOI: 10.48550/arXiv.2212.09413. 

[15] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, Automated Machine Learning: Methods, Systems, Challenges, 
Springer Cham, 2019, 223 pages, {ISBN-13: 978-3-030-05318-5}. 


