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Abstract - For industrial systems to be reliable and efficient, motor faults detection is important. Conventional methods of fault detection 

are typically expensive and time-consuming. The ability to detection motor faults has advanced significantly in recent years thanks to the 

application of deep learning techniques. Deep learning algorithms have the ability to automatically extract complicated features from big 

data sets, which can speed up and improve the accuracy of  motor faults detection. Since collecting motor acoustic data is cost-effective 

and easy, it is advantageous to use it in fault detection. In this study, motor acoustic signals were converted into spectrograms and faults 

in induction motors were detected using a transfer learning approach with pre-trained models. Totally 8-class fault detection was 

performed with an accuracy rate of 91.52% using VGG16 and 92.11% using VGG19.  
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1. Introduction 
Computer-aided software in motor faults detection most commonly utilizes motor vibration signals as input data [1-3]. 

Diagnosing faults with motor vibrations is efficient and does not require significant time. However, it necessitates the 

placement of accelerometer sensors on the motor to gather vibration signals, a process that demands expertise. On the other 

hand, diagnostics using motor acoustic data does not mandate a direct connection to the motor, making the collection of 

acoustic data both economical and effortless [4]. Nevertheless, the scarcity of publicly available acoustic data has restricted 

studies in this field. 

The integration of machine learning and deep learning models in motor faults detection offers advantages such as the 

optimization of maintenance processes in industrial facilities and the early detection of malfunctions. However, these models 

necessitate substantial amounts of data. While an increase in data enhances the accuracy of fault detection models [5], it also 

prolongs the training process. Therefore, the utilization of pre-trained neural networks in fault detection aids in achieving 

optimal performance with reduced data requirements and training time. In the study [6], irreversible-demagnetization fault 

and bearing faults in permanent magnet synchronous motor were classified with an accuracy rate of 96.65% using VGG16. 

In the study [7], bearing faults were classified with AlexNet, VGG19, GoogLeNet and ResNet50. The test accuracy rate in 

fault classification using VGG-19 is 85.46% for the SGD optimizer, 98.22% for the Adam optimizer and 97.92% for the 

Adamax optimizer. In the study [8], the study focused on classifying bearing faults using ResNet50, VGG16, and VGG19. 

The highest accuracy rate of 99.92% was achieved with VGG-19. 

In this study, we classified induction motor faults using pre-trained VGG16 and VGG19 models. This approach was 

adopted to address the challenge of limited publicly available data, which often hinders the use of engine sound signals for 

engine fault detection. Time domain sound data belonging to healthy and 7 fault classes in the UOEMD-VAFCVS dataset 

[9] were converted to spectrograms using Short Time Fourier Transform (STFT). Spectrograms were resized to match the 
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input size expected by the VGG16 and VGG19 models, which is 224×224 pixels. Fault classification using VGG16 

achieved an accuracy rate of 91.52%, while VGG19 achieved an accuracy rate of 92.11%.  

 

2. Short Time Fourier Transform (STFT) 
 Short-Time Fourier Transform (STFT) is a spectrum analysis technique used to analyze the frequency components of 

signals that change over time. It works by dividing the signal into small time segments and applying the Fourier transform 

to each segment, allowing us to observe how the signal's frequency content changes over time. 

STFT is valuable because it provides a way to visualize the time-varying frequency components of a signal in the 

time-frequency plane. This helps us better understand the signal's characteristics in both the time and frequency domains. 

STFT is commonly used in fields such as image and audio processing to create spectrograms, which provide a detailed 

representation of a signal's frequency and time components. Where x(t) is input signal, g(t) is window function, ω is the 

angular frequency parameter and τ is shifting parameter, STFT of the input signal is given in Equation 1. 

When using STFT, the process typically involves applying a windowing function with a specific amount of overlap. 

This adjustment shifts the starting point of each window by a certain amount, typically a fraction of the window size, to 

create the next window. Overlap plays a crucial role in balancing the time and frequency resolutions of STFT. A higher 

overlap results in increased time resolution because the windows are applied more frequently, capturing more detail in the 

time domain.  

 

ℱ(𝜏, 𝜔) = ∫ 𝑥(𝑡)
+∞

−∞

g(t − τ)𝑒−𝑗𝜔𝑡𝑑𝑡 (1) 

 

3. Transfer Learning 
 Transfer learning is the transfer of information learned in one task to another task. Classifying with pre-trained models 

is achieved with transfer learning approach. A pre-trained model is an artificial neural network model that has been pre-

trained on a large dataset, and tuned to be able to solve a general task or tasks. Pre-trained models are often used to solve 

complex problems such as visual perception, natural language processing or audio processing. These models are typically 

trained for a general task on a large dataset and then can be tuned on a smaller dataset to solve a specific task. This can often 

be useful to achieve good performance when working with smaller datasets.   

 

3.1 VGG16 
 VGG16 is a deep convolutional neural network (CNN) model developed by researchers from the University of Oxford 

[10]. VGG16 is a model trained on the ImageNet dataset and achieves high accuracy in the image classification task. The 

model is particularly notable for its depth (number of layers) and simplicity. VGG16 contains 13 convolutional layers, 5 

maxpooling layers and 3 fully connected layers (FC). Convolutional layers are used to learn features in images, while fully 

connected layers are used to perform classification. Each convolution layer has a 3×3 filter size with a stride of 1 and each 

maxpooling layer has a filter size of 2×2 and a stride of 2. Figure 1 shows the architecture of VGG16. 
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Fig. 1: VGG16 architecture. 

 
3.2 VGG19 
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 VGG19 is an expansion of the VGG16 model and has more layers. VGG19 was trained on the ImageNet dataset and 

achieved high accuracy in the image classification task. VGG19 contains 16 convolutional layers, 5 maxpooling layers and 

3 fully connected layers. Each convolution layer has a 3×3 filter size with a stride of 1 and each maxpooling layer has a filter 

size of 2×2 and a stride of 2. Figure 2 shows the architecture of VGG19. 

 The basic idea of VGG19 is that as the depth (number of layers) increases, the model can learn more complex features. 

However, adding more layers can make the training process of the model more difficult and require more computing power. 

VGG19 achieves this balance, effectively learning complex features while making training manageable. VGG19 has been 

an important milestone in the development of deep learning models, especially in the field of image processing. The model 

has shown that the complexity of deep neural network architectures can increase and deeper models can perform better. 
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Fig. 2: VGG19 architecture. 

 

4. Materials and Methods 
 In this study, UOEMD-VAFCVS public electricity motor fault dataset [9] is used. Figure 3 shows UOEMD-VAFCVS 

dataset test rig setup [11]. The maximum output power of the motor at 60 Hz frequency is 3.00 Hp and the maximum speed 

is 3600 rpm. The microphone (PCB, type 130F20) is positioned within 2 cm of the left bearing housing and is supported by 

a separate stand designed to isolate vibrations. 

 

 
Fig. 3: UOEMD-VAFCVS dataset test rig setup [11] 

 
 The induction motor dataset’s sampling frequency is 42 kHz. Time domain acoustic signals in this dataset are 

converted into spectrograms by applying STFT. In this study, Hanning windowing method is applied. Acoustic signals are 

divided into segments of 512 data points each. Overlap value is set to 460. Figure 4 depicts spectrogram images 

corresponding to each class. Spectrogram images are randomly divided, with 80% allocated to the train folder (20480 

spectrograms), 10% to the validation folder (2560 spectrograms) and 10% to the test folder (2560 spectrograms). The 

spectrograms in the train and validation folders are utilized to train the final classification layers of the VGG16 and VGG19 

pre-trained models, using the dataset at hand. The performance of the re-trained and updated VGG16 and VGG19 models is 

evaluated using the test dataset. Figure 5 summarizes the steps described. 
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Fig. 4: Spectrogram images for each class 
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Fig. 5: Proposed method 

 
5. Experimental Results 

The study is carried out using Google Colab Notebook. The model used the "Categorical_crossentropy" loss 

function, Adagrad optimizer, and a batch size of 32, with results obtained after training for 50 epochs. 

In Figure 6, validation accuracy and loss graphs for the VGG16 and VGG19 models are presented. The highest 

accuracy rate achieved by the VGG16 model over 50 epochs is 91.6796%, and for VGG19, it is 92.4609%. 

In Figure 7, confusion matrices are given. Both models showed the highest accuracy when classifying data 

belonging to the "Healthy" class. VGG16 showed the lowest performance when classifying data belonging to the 

"Voltage unbalance and single phasing" class. It misclassified 41 of the 320 data belonging to this class. VGG19 showed 

the lowest performance when classifying data belonging to the "Rotor Unbalance" class. It misclassified 52 of the 320 

data belonging to this class. 
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                                                                (a)                                                                  (b) 

Fig. 6: (a) Validation accuracy and (b) validation loss graphs for VGG16 and VGG19 

 

 

 
                                              (a)                                                                                              (b) 

Fig. 7: Confusion matrix (a) VGG16 (b) VGG19 

 

 

Spectrogram data were classified using a custom 2D-CNN model to investigate the impact of using pre-trained models 

on the accuracy of engine fault detection using acoustic data. The custom 2D-CNN model consists of 4 convolutional layers, 

4 max-pooling layers, and 3 dense layers. The performance of models trained on a large dataset is reflected in the accuracy 

rate for detecting motor faults. Table 2 presents the accuracy rates of the VGG16, VGG19, and custom 2D-CNN models. To 

evaluate the performance of the VGG16 and VGG19 model in detail, Accuracy, Precision, Sensitivity, Specificity and F1-

Score values are given in Table 2 for each class and overall. 

 
Table 1: Accuracy rates comparision 

 

Model Accuracy (%) 

VGG16 91.52 

VGG19 92.11 

Custom 2D-CNN 83.36 
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Table 2: Performace Values of VGG16 and VGG19 

 

Pre-trained 

Models 

Classes Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-Score 

 

 

 

 

VGG16 

B_R  98.1250 92.2360 92.8125 98.8839 92.5234 

F_B  97.7344 91.7197 90.0000 98.8393 90.8517 

H_H 99.9219 100.0000 99.3750 100.0000 99.6865 

K_A  97.7344 91.4557 90.3125 98.7946 90.8805 

R_M  97.2266 86.7257 91.8750 97.9911 89.2261 

R_U 97.4219 89.4410 90.0000 98.4821 89.7196 

S_W 97.9688 92.9487 90.6250 99.0179 91.7722 

V_U 96.9141 88.0126 87.1875 98.3036 87.5981 

Overall 91.52 91.5674 91.5234 98.7891 91.5323 

 

 

 

 

VGG19 

B_R  97.8906 90.7975 92.5000 98.6607 91.6409 

F_B  98.2813 93.6709 92.5000 99.1071 93.0818 

H_H 99.8047 100.0000 98.4375 100.0000 99.2126 

K_A  98.0469 90.4192 94.3750 98.5714 92.3547 

R_M  97.2266 87.6133 90.6250 98.1696 89.0937 

R_U 97.2656 93.7063 83.7500 99.1964 88.4488 

S_W 98.0859 93.5691 90.9375 99.1071 92.2345 

V_U 97.6172 87.9765 93.7500 98.1696 90.7716 

Overall 92.11 92.2191 92.1094 98.8728 92.1048 

 
 
 
6. Conclusion 
 In this study, motor acoustic signals were converted to spectrograms using Short-Time Fourier Transform (STFT) to 

classify faults in induction motors. The spectrograms were classified with the VGG16 and VGG19 models, which were pre-

trained on images, into 8 classes (Bowed rotor, Faulty bearings, Healthy, Broken rotor bars, Rotor Misalignment, Rotor 

Unbalance, Stator Winding Fault, Voltage unbalance and single phasing). The accuracy rates of VGG16 and VGG19 are 

91.52% and 92.11% respectively. This study focuses on the need for more extensive use of motor acoustic signals in fault 

detection. The challenge of limited motor acoustic data can be overcome with pre-trained models. 
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