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Abstract - In the era of data-driven healthcare, identifying, quantifying, and mitigating bias in machine learning is of paramount 
importance. The impact of fair machine learning is particularly significant when predictions are applied in a clinical setting, where biased 
predictions can lead to unequal healthcare outcomes. In this paper, we consider the area of biomedical informatics and examine existing 
bias metrics and introduce a new metric to analyze bias in a smart home dataset. We investigate bias that may occur along sensitive 
attributes and examine its impact on the machine learning task of activity recognition from the collected data. In a novel approach to bias 
mitigation, we introduce a multi-objective generative adversarial network that creates synthetic data to mitigate sample bias by enhancing 
data diversity. We validate these methods using data collected for older adults living in smart homes who are managing multiple chronic 
health conditions, highlighting the potential of our approach to improve health predictions and outcomes.  
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1. Introduction 

In bioinformatics and biomedicine, the potential of machine learning (ML) to revolutionize healthcare is exciting for 
many clinicians. Biomedical datasets are increasingly being used to inform clinical decision-making, contributing to the 
growing field of digital health, which leverages technology to monitor and improve health outcomes [1]–[5]. However, the 
adoption of these algorithms for critical decision making is still limited. The black-box nature of algorithms frequently 
necessitates caution for clinicians [6]. 

Biomedical data often contain inherent biases due to factors such as demographic disparities in data collection, unequal 
access to healthcare, and historical health disparities. When not properly addressed, these biases can lead to skewed 
predictions and unequal health outcomes. For instance, a predictive model trained on biased data might disproportionately 
misclassify certain demographic groups, leading to suboptimal treatment recommendations for those groups. In the worst-
case scenario, such biases could exacerbate existing health disparities, undermining the goal of equitable healthcare. Distrust 
in ML algorithms is heightened by publicized cases where machine learning algorithms yielded prejudicial inferences [7]. 
Unless ML algorithms are designed to avoid bias along a particular sensitive attribute, they will reflect the prejudices of the 
data used to train them. 

In this paper, we introduce a new bias metric, called Faceted Disparate Impact (FDI), that gives a novel quantitative 
perspective on bias consistent with legal precedent. Using prior metrics and FDI, we analyze bias in a clinical dataset 
containing smart home data.  Finally, we propose a multi-agent generative adversarial network tool, called HydraGAN, to 
create diverse synthetic data that mitigates bias due to lack of sample diversity. We postulate that the new metric, FDI, is 
valuable because it considers all outcomes of a classification decision with context. Additionally, our proposed HydraGAN 
tool, which generates diverse synthetic data, has the potential to enhance the robustness of predictive models in 
bioinformatics, leading to more accurate and equitable health predictions. 

 
2. Related Work 

There have been numerous attempts to reduce machine learning bias. Weighting data points can reduce bias by 
emphasizing a minority class, while transforming the feature representations may reduce correlation between sensitive 
attributes and other features [8]. A systematic search of models and hyperparameters can identify the combination yielding 
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the lowest bias [9]. In the case of digital health, much of the bias is due to a lack of representation for underrepresented 
groups. Some prior research limit analysis to the data, while others examine how predictions and corresponding actions will 
affect target groups [10], [11]. Difficulties have been noted in aligning these measures with statistical requirements [12]. 

In this paper, we propose a multi-agent generative adversarial network (GAN) to generate sample data that improve 
diversity. Recent synthetic data creation for health applications relies more frequently on GANs [13]. Traditionally, GANs 
represent two-agent systems. However, the FairGAN architecture [14] balances the generator with two critics, one promoting 
data realism and the other supporting fairness. Our proposed approach extends these previous works by supporting an 
arbitrary number of agents, corresponding to a list of optimization criteria for the synthetic data. In this analysis, we harness 
the power of critics for pointwise realism, distribution realism, and distribution diversity. 

 
3. Clinician-in-the-loop Smart Home Study 

We collected continuous ambient sensor data for 22 older adults who are managing two or more chronic health 
conditions. Because 70% of the world's older adults are managing chronic conditions, the World Health Organization is 
asking for technology solutions to support these individuals [15]. The goal of this study is to design a clinician-in-the-loop 
(CIL) smart home that identifies health condition exacerbations using clinician-guided machine learning techniques. Table 
1 provides a summary of the study participants. 

Table 1: Study participants. F=female, M=male; HS=high school, B=bachelor, M=master, D=doctorate. 

Age 89 83 88 75 95 89 81 63 92 79 83 88 90 76 93 
Gender F M F M F F F F F M F F F F M 
Education HS B HS D HS B HS B HS D B B B B M  

 
We installed a CASAS smart home in a box (SHiB) [16] in the home of each subject for one year. The CASAS SHiB 

sensors monitor movement, door use, ambient light, and temperature. Nurses met weekly with each subject. Based on these 
interviews and nurse visual inspection of smart home data, changes in health status related to condition exacerbations were 
identified. In prior work, we extracted markers from these data that detect flare-ups in symptoms related to conditions such 
as congestive heart failure, diverticulitis, urinary tract infections, and Parkinson's disease [17]. 

 
4. Bias in Activity Recognition 

As a first step in analyzing the data, we created a machine learning approach to recognize activities in real time. In this 
process, a sliding window is moved over data and used as context for the learning algorithm to label the last sensor reading 
in the window. At least one month of data was manually labelled by research team members (inter-annotator agreement 

κ=.80). In prior work, we validated that 11 activities (bed-toilet transition, cook, eat, enter home, leave home, hygiene, relax, 
sleep, wash dishes, work, other) are recognized with accuracy=0.99 [18]. For this work, we categorize the 11 activities into 
binary classes of active or sedentary activities to train a multi-layer perceptron to predict the patient's activity status. This 
gives nurses and viewers a more understandable gist of a patient's activities and is easier to tell when something is wrong 
with a glance. We then use a multi-layer perceptron to predict the patient's activity status. In this paper, we focus our attention 
on binary activity recognition and analyze bias for this task. This machine learning task is a pivotal component of assessing 
health state and is central to many other mobile health technologies. 

Table 2 summarizes popular bias metrics. As the table shows, many metrics do not reflect all desired properties. To meet 
this need, we introduce a bias metric called Faceted Disparate Impact (FDI). In our discussion, we distinguish “benefit” from 
“bias”. While benefit references an advantage that is gained from an action (e.g., a ML prediction), bias reflects the distance 
between true and expected benefit. FDI is created based on legal precedents established by the US Supreme Court, EU’s 
Charter of Fundamental Rights, the Canadian Human Rights Act, and the Constitution of India, indicating that a lower 
admittance rate of a discriminated group warrants further investigation. 
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Table 2. Popular bias metrics and their properties. Each metric contrasts group i with group j. A larger score indicates more bias toward 
group i. P=positive, N=negative, n=size of set. 

Metric Formula Directed Symmetric n > 0 Resilient Bounded Context 
Disparate impact [19] 𝑃𝑃�𝑖𝑖

𝑛𝑛𝑖𝑖 ÷

𝑃𝑃�𝑗𝑗
𝑛𝑛𝑗𝑗

 ✔ × × ✔ × × 

Predictive parity [20] 𝑇𝑇𝑃𝑃𝑖𝑖
𝑃𝑃𝑖𝑖 −

𝑇𝑇𝑃𝑃𝑗𝑗
𝑃𝑃𝑗𝑗

 ✔ ✔ × × ✔ × 

Treatment equality [21] 𝐹𝐹𝑃𝑃𝑖𝑖
𝐹𝐹𝐹𝐹 −

𝐹𝐹𝑃𝑃𝑗𝑗
𝐹𝐹𝐹𝐹𝑗𝑗

 ✔ ✔ × × × × 

FPR difference (FPRD) [22] 𝐹𝐹𝑃𝑃𝑖𝑖
𝐹𝐹𝑖𝑖 −

𝐹𝐹𝑃𝑃𝑗𝑗
𝐹𝐹𝑗𝑗

 ✔ ✔ × × ✔ × 

TPR difference (TPRD) [22] 𝑇𝑇𝑃𝑃𝑖𝑖
𝑃𝑃𝑖𝑖 −

𝑇𝑇𝑃𝑃𝑗𝑗
𝑃𝑃𝑗𝑗

 ✔ ✔ × × ✔ × 

Equalized odds [23] 𝐹𝐹𝑃𝑃𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑃𝑃𝐹𝐹𝐹𝐹 ✔ ✔ × × ✔ × 
Difference in conditional acceptance  [22] 𝑃𝑃𝑖𝑖

𝑃𝑃�𝑖𝑖
−
𝑃𝑃𝑗𝑗
𝑃𝑃�𝑗𝑗

 ✔ ✔ × × × × 

Difference in conditional rejection  [22] 𝐹𝐹𝑖𝑖

𝐹𝐹�𝑖𝑖
−
𝐹𝐹𝑗𝑗

𝐹𝐹�𝑗𝑗
 ✔ ✔ × × × × 

Difference in positive proportion & labels  
[22] 

𝑃𝑃�𝑖𝑖
𝑛𝑛𝑖𝑖 −

𝑃𝑃�𝑗𝑗
𝑛𝑛𝑗𝑗

 ✔ ✔ ✔ ✔ ✔ × 

Faceted Disparate Impact 
𝐹𝐹𝑃𝑃𝑖𝑖 − 𝐹𝐹𝐹𝐹𝑖𝑖

𝑛𝑛𝑖𝑖
−
𝐹𝐹𝑃𝑃𝑗𝑗 − 𝐹𝐹𝐹𝐹𝑗𝑗

𝑛𝑛𝑗𝑗
 ✔ ✔ ✔ ✔ ✔ ✔ 

 
The FDI metric is formalized in Eqs. 1-3. Using the legal precedents, we define benefit as a positive (+1) prediction, or 

desirable outcome, for each individual q. We define 𝑏𝑏 as the overall benefit for any group, estimated as the weighted mean 
benefit over individuals in the group. Next, we assign weights to the prediction classes, defaulting to a weight of 1 for the 
positive class and 0 for the negative class. Based on the ground truth values, we compute expected benefit 𝛦𝛦�𝑏𝑏𝑞𝑞� as 1 for 
points with positive labels and -1 for negative points, resulting in Eq. 1. 

 
𝛦𝛦[𝑏𝑏] = 1

𝑛𝑛
∑∀𝑏𝑏𝑞𝑞 = 1∙𝑃𝑃+0∙𝑁𝑁

𝑛𝑛
= 𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁

𝑛𝑛
        (1) 

 
Next, 𝐵𝐵 quantifies the bias for a given group and is calculated as b-𝛦𝛦[𝑏𝑏]. Substituting and simplifying yields: 
 

𝐵𝐵 = 𝐹𝐹𝑃𝑃−𝐹𝐹𝑁𝑁
𝑛𝑛

∈ [−1,1]        (2) 
 
To find the bias for group i over group j (FDI), Eq. 3 calculates the difference of the directional bias for each group. 
 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐵𝐵𝑖𝑖 − 𝐵𝐵𝑗𝑗 = 𝐹𝐹𝑃𝑃𝑖𝑖−𝐹𝐹𝑁𝑁𝑖𝑖
𝑛𝑛𝑖𝑖

− 𝐹𝐹𝑃𝑃𝑗𝑗−𝐹𝐹𝑁𝑁𝑗𝑗
𝑛𝑛𝑗𝑗𝜖𝜖[−2,2]

     (3) 

 
We note several benefits of FDI. While some metrics focus solely on benefit or harm (FP or FN), FDI uses all confusion 

matrix cells. As a result, this metric includes more facets of the comparison between ground truth and predicted values. 
Additionally, this metric handles class imbalance without impacting calculations, creating metric resiliency. Furthermore, it 
is directed and symmetric. Importantly for our study, FDI can be adapted for binary classification, multi-class classification, 
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regression, and ranking. In the class of multi-class classification, the calculation is based on an n-ary confusion matrix, 
summarized by mean values. For regression, FDI replaces FP and FN with error (e.g., mean absolute error, mean squared 
error) above and below the desired threshold. When applying to ranking, FDI considers the difference in the ranked positions. 

Many clinical data are time series in nature (e.g., EHR entries, lab results, vital signs, or sensor readings). To evaluate 
bias in such data, we need to extend the bias metrics to apply to time series data. In time series data, we consider each time 
step as an individual step that repeats benefit or harm, with a corresponding confusion matrix. In this scenario, bias is 
aggregated over individuals in a group and time steps in the series. For our experiments, we randomly sample 5% of all data 
to train, leaving 95% to validate and test. This process yields a larger undersampling effect and highlights potential bias. 

 
5. Mitigating Bias with Diverse Synthetic Data 

Because researchers recognize the surrogate role offered by synthetic data generators, they create methods to generate 
increasingly realistic data proxies. We consider the impact of creating realistic, diverse synthetic data for our dataset. What 
prior approaches lack is the ability to introduce multiple critics, each of which represents a distinct goal of the synthetic data. 
In some cases, emulating all characteristics of available real data is not the sole, or even desired, outcome. For example, the 
data may also need to achieve a diversity goal or obfuscate sensitive information. For this, we use HydraGAN [24], a multi-
agent generative adversarial network that performs multi-objective synthetic data generation. 

We adopt a multi-agent GAN, called HydraGAN, that assigns a discriminator to each data goal (see Fig. 1). Each of the 
critics separately critique individual or batches of synthetic data points. The generator's loss is the weighted sum of all critic 

 

Fig. 1: The HydraGAN multi-agent architecture. 
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scores. When the system converges (the weight changes for an epoch are below a threshold value), a Nash equilibrium is 
formed among the discriminator goals. Here, we focus on three discriminators that minimize loss for traditional pointwise 
data realism (Dp, Eq. 4), distribution data realism (Dr, minimizing the difference between data distribution characteristics for 
the real and synthetic data, Eq. 5), and data diversity (minimizing the absolute difference between observed (α) and desired 

(β) value proportions for a particular feature f, see Eq. 6). Here, xr and xg represent batches of real and corresponding synthetic 
points. 

 
(4) 

 
(5) 
(6) 

 
        

Diversity constraints may be designed to ensure equal representation among alternative groups. As an example, if 90% 
of a physical data collection represents one value for a sensitive feature (e.g., race) and 10% represents another, the diversity 
discriminator will move toward a more uniform distribution. Our architecture uses a combination of 1D convolutional layers, 
learnable positional encoding, and fully connected layers. Our regularization techniques include layer normalizations, 
instance normalizations, dropout layers, and Gaussian noise. We use the leaky ReLU activation function with a negative 

slope of 0.2. Each network uses the Adam optimizer with a learning rate of 0.0002, β1= 0.5, and β2 = 0.9$. We train with 75 
epochs and conduct 100 steps per epoch. Each step contains a mini-batch of 64 time windows, each with a sequence length 
of 32. 

The generator processes the sensitive attribute conditional, and a noise vector and outputs normalized values in time 
windows. We partition synthetic features to give appropriate output activations. Since our real date-time features are 
represented with two sine and cosine pairs for the day of year and time of day, the synthetic time features are outputted with 
a sine activation. Each set of one-hot encoded features (sensor one, sensor two, activity) is then passed through a softmax 
activation. 

 
6. Experimental Results 

We are interested in quantifying the bias contained in our clinical data using traditional metrics and our novel FDI 
metric. We then analyze bias for the newly generated dataset. While we focus on one dataset, the demographics in our study 
are like those found in many other clinical studies. A prevalent form of bias in clinical studies is sample selection bias. Many 
clinical study populations are largely devoid of diversity. As an example, Latinos and Asian Americans are disproportionately 
underrepresented in clinical trials assessing cognitive decline, comprising only 1%-5% of research participants [25]. 

We focus on two sensitive attributes: age and gender. In the case of gender, we assess bias for the traditional male and 
female groups. In the case of age, we assess bias for the older 25% of the sample in comparison with the group containing 
the younger 75% of the participants. From Table 2, we highlight Disparate Impact (DI), Difference in Conditional 
Acceptance (DCA), Difference in Proportionate Positives and Labels (DPPI), and Faceted Disparate Impact (FDI). This is a 
representative set: the remaining metrics yield very similar results to these. 

The selected bias metrics focus on a task, in this case activity recognition. To simplify analyses, we aggregate activity 
categories into two classes: active behavior (bed-toilet transition, cook, eat, enter home, leave home, hygiene, wash dishes) 
and sedentary behavior (relax, sleep, work, other). For DCA, DPPL, and FDI, a no-bias score is zero. For DI, the no-bias 
score is one. A closer value to the no-bias score indicates less bias. A value greater than no-bias is bias toward the sedentary 
categories, while a lower value indicates a bias toward the active categories. 
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Fig. 2: Boxplots of bias metrics applied to original dataset. 

 
 
 
 
 
6.1. Original dataset 

Fig. 2 depicts boxplots of quantified bias on the original dataset. Since Ages 90-95 receives high scores in DI and DPPL, 
we see they are more likely to be predicted as sedentary. Referencing FDI, which gives context for correct predictions, we 
see that these positive predictions are largely correct as the Ages 90-95 FDI score is near zero. This makes sense as our data 
reflects that these older patients tend to be sedentary more often than the younger class. However, since FDI is positive, we 
see that there is still a slight bias for predicting the older age group as sedentary more often than they should. 
 
6.2. Expanded dataset 

We train the model using synthetic data generated by HydraGAN then quantify the bias by testing on real data. We 
summarize the bias results in Fig. 3. Here, individual diversity is enforced by querying the generator with each individual's 
label. This individual diversity also improves the protected class's diversities. In total, 3,072,000 synthetic points are created 
to be realistic and improve diversity for the underrepresented groups. 

We see in Table 3 that the synthetic data mitigates bias overall (the bold cells indicate improvement). For FDI, DPPL, 
and DCA, a score of 0 indicates no bias. For DI, the ideal score is 1. Over many trials, these scores have a negligible standard 
deviation. 

 

 
Fig. 3: Boxplots of bias metrics applied to the synthetically-expanded dataset. 

 
Table 3: Comparison of bias results for synthetic and real data for each possible sensitive attribute. 
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Table 4: Comparison of synthetic and real data to a uniform distribution using measures of KS (Kolmogorov-Smirnov) 
statistic, Kullback-Leibler (KL) divergence, and Jensen-Shannon (JS) distance. 

 
 
 
 
 
 
Table 4 shows that the synthetic data improves diversity. The improvement in uniformity is statistically significant 

(p<0.001) for the Kolmogorov-Smirnov (KS) statistic when comparing distributions for activities. Furthermore, our synthetic 
data's distribution over individuals reflects distance of zero from a uniform distribution (the desired result) due to the 
infinitely strong conditional passed to the generator. Reviewing the protected class's bias reductions in Table 3, we 
furthermore conclude that our synthetic data successfully mitigates bias for age and gender. 

 
7. Discussion and Conclusion 

In this paper, we examine biases that may exist in a clinical dataset using smart home sensor data to model activities 
that are used for health assessment. Metrics of bias are varied yet do not consistently make use of all predicted outcomes. 
These outcomes lead to advantages for one group over another and so need to be considered in bias analyses. As a result, we 
not only use traditional metrics, but we also introduce a new metric based on legal precedent, Faceted Disparate Impact. As 
we show, the FDI metric considers all cells in the confusion matrix and compares predicted labels with ground truth labels, 
leading to a more comprehensive analysis of bias and fairness. 

The experimental results indicate that bias does exist in our data, even for a straightforward task such as activity 
labelling. Because activity recognition is used as a cornerstone for embedded and mobile technology strategies for health 
assessment and intervention, even this component necessitates unbiased reasoning and fair treatment of all groups. To 
potentially mitigate sample bias that results from a lack of diversity in the collected data, we introduce HydraGAN, a multi-
agent synthetic data generator. Generating synthetic data with HydraGAN does reduce bias in the data based on multiple 
metrics. 

This is an early analysis of the FDI metric and HydraGAN algorithm to analyze and lessen bias in clinical data. Further 
validation is needed to assess these contributions on a greater variety of clinical datasets and across additional protected 
attributes. We also note that HydraGAN can incorporate additional critics that consider metrics such as privacy preservation. 
Future work will analyze the role these optimization criteria can play in providing more trustworthy machine learning 
technologies for clinical data assessment and application. 
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