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Abstract – Adopting healthy brain behaviours may enhance and sustain cognitive health for older adults at risk of cognitive decline. 
Because relying on laboratory measures or self-report to assess the impact of a behaviour change is prone to error, we introduce a method 
to monitor, quantify, and describe behaviour change using smart homes. In this paper, we describe the application of this method to 
analyse behaviour change for n=14 older adults receiving a six-week healthy brain behaviour program consisting of personalized 
education, selection, and monitoring of new, sustainable healthy brain aging behaviours. A CASAS Smart Home in a Box (CASAS ShiB) 
is installed in each participant’s home and data are collected continuously at baseline and during the program. Using our Behaviour 
Change Detection (BCD) algorithm, we quantify weekly changes in behaviour at baseline and each program week. Across the study 
population, results show that behaviour change from baseline to the end of program represents a 23.22% increase in change within the 
four-week baseline. We employ a virtual classifier to analyze the type of changes that are observed and assess them in comparison with 
self-reported goal adherence. The results indicate that smart home technologies combined with data mining techniques provide a method 
to monitor and support behaviour change goals in everyday life.  
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1. Introduction 

The global increase in the prevalence of Alzheimer’s and related dementias (ADRDs) is a complex social challenge. 
More than 55 million people world-wide are living with dementia, a syndrome leading to cognitive decline caused by various 
diseases that damage or destroy the brain’s nerve cells, with nearly 10 million cases added annually [1]. Dementia is a major 
cause of disability and dependence among older adults [1], [2]. A high proportion of persons with dementia are cared for at 
home yet the number of caregivers remains disproportionate to the need [3], [4]. Addressing the complexity of this global 
situation has shaped global health priorities. Evidence-based interventions aimed at combating cognitive decline are needed. 

It has been estimated that one-third of dementia cases are attributable to modifiable risks, including physical inactivity, 
depression, and lack of cognitive stimulation [5]. In the absence of effective pharmaceutical therapies, reducing these risks 
is key to maintaining connection to friends and family and extending independent living, which many older adults desire [6]. 
A body of evidence shows the potential for brain neuroplasticity not only in response to cognitive stimulation but also social 
engagement, exercise, and cognitively stimulating leisure activities [7], [8]. Programs that support brain health by targeting 
risk factors and promoting behaviour change are of interest to the community [9], [10]. Recent data suggests that multi-
domain brain health programs show promise for increasing engagement in healthy brain aging behaviours and improving 
cognitive outcomes [11], [12]. At the same time, obtaining scientific evidence that healthy brain aging behaviours are being 
effectively integrated into an individual’s everyday routines to support cognition and functional independence is difficult to 
achieve as traditional methods of assessing outcomes rely on sparse sets of clinical measures obtained in controlled settings. 

Smart homes may offer an opportunity to gain objective information about engagement in healthy brain activities 
through continuous monitoring of a person’s behaviour. Because ambient sensor data are collected unobtrusively, the 
assessed behaviour changes hold greater ecological validity than laboratory measures and self-report. In this paper, we 
introduce a smart home technology to monitor, quantify, and describe weekly behaviour change in the context of a brain 
behaviour program. Contributions of this work include application of a brain behaviour program personalized for each 
participant’s needs and schedule; smart home technology to monitor behaviour patterns; behaviour change detection 
algorithm to quantify and describe changes in behaviour from baseline; and analysis of goal adherence and changes for a 
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cohort of n=14 older adults. This study was approved for human subjects’ research by the Washington State University 
Institutional Review Board. 
 
2. Related Work 
2.1. Home-Based Interventions for Dementia 

 Non-pharmacological interventions administered in the home by clinicians or caregivers include art, music, 
exercise, social and communication activities, and cognitive activities. These interventions are important first-line 
options for managing symptomology, improving functional independence and supporting well-being and quality of life 
[13], [14]. Over the last decade, technology-enabled interventions have been increasingly explored. Tablets or iPads 
have been used to set reminders, connect with friends and family to reduce loneliness [15], [16], and provide 
reminiscence therapy [17]. Conversational agents like “Anne” have been developed to support memory and enjoyment 
needs [18] and interactive robots are available for emotional support [19]. 

Technological support for dementia care primarily focuses on support for caregivers or persons with dementia. 
Technologies supporting caregivers may be more readily adopted because of greater learning abilities. However, other 
technologies are specifically designed for use by persons with dementia to extend memory and independence. Many of 
the existing dementia technologies are aimed at diagnosis by assessing images and cognitive battery scores [20], voice 
[21], behaviour, and function [22]. The work described in this paper is uniquely positioned to provide support for 
technologies that offer brain health outcome monitoring. Largely missing from the extant literature are descriptions of 
technologies designed to assess whether, and if, non-pharmacological interventions create meaningful change in 
everyday behaviours, cognition and function [23]. We focus on such assessment in this paper. 

 
2.2. Time Series Change Detection 

 We assess whether healthy brain aging behaviour changes can be detected by change in smart home-detected 
behaviour patterns. Detecting change is typically done through supervised classification of two time series as belonging 
to the same category or not [24], [25], but these rely on a large number of labelled training examples. In contrast, 
unsupervised change detection methods compare two time series segments by estimating the ratio of probability densities 
for the series, known as the Kullback-Leibler divergence [26]. The two series are deemed sufficiently different if the 
ratio exceeds a predefined threshold. 

In our earlier work [27], we designed a method to quantify change in a set of behaviour markers. The method 
demonstrated the ability to compare weekly behaviour to a baseline. However, the algorithm was designed to process 
sensor data collected by an Apple watch. In this paper, we describe how to construct a change detection method that 
detects and describes changes in digital markers extracted from continuous smart home sensor data. 
             
3. Methods 
 
3.1 Study design 

The work described in this paper is part of a larger clinician-in-the-loop (CIL) study [28]. In the CIL study, ambient 
sensors were installed in the homes of participants age 65+ who were managing multiple chronic health conditions. The 
objective of the CIL study was to explore how these smart homes could be used to detect critical changes in health. 
Every week of the study, trained nurse researchers met with participants to update the person’s health status and obtain 
an account of health events that occurred that week. These notes were used to validate detected changes in health status 
and train machine learning algorithms. 

Participants could further elect to enroll in a healthy brain aging program, a modification of B-Fit [29]. The program 
was delivered in a flexible, individualized format to elicit and promote sustainable change in behaviour patterns. The 
analysis in this paper focuses on participants living alone who completed the 6-week program. The final sample included 
n=14 adults (age mean=84.64, std=4.85; 3 male 11 female; years of education mean=16.71, std=3.29).  
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Over the course of six weeks, participants met with a clinician educator (i.e., advanced clinical psychology doctoral 
student) once weekly for 90-minute lessons. Participants were provided with a bound booklet that contained all educational 
educational material that could be covered throughout the program. In session 1, participants were provided with general 
information about the brain, cognitive aging, successful goal setting guidelines, and healthy brain aging behaviours. In the 
the subsequent five sessions, participants selected a healthy brain aging topic: cognitive engagement, physical activity and 
and cardiovascular health, nutrition, stress, sleep, social engagement, and compensatory strategy use. Following presentation 
presentation and discussion of the chosen topic, the clinician educator guided the participant through a collaborative goal 
goal setting process that emphasized manageable, intrinsically motivating goals (e.g., increase fruit intake, walk 10 minutes 
each day) that could be integrated into the participant’s everyday routine behaviour. As the modified B-Fit program was 
individualized and participant-led, participants could choose each week whether or not they wished to add an additional goal 
based on a new topic or continue to work on the prior week topic area. Participants were provided with standardized tracking 
sheets on which they rated their daily progress towards each goal: 0 = did not meet goal, 1 = partially met goal, 2 = met goal, 
3 = exceeded goal. Each week, clinician educators collected the participants’ self-rated goal completion scores and helped 
participants engage in goal problem-solving as needed.  
 
3.2 Smart Home Data Collection 

Each participant’s home was transformed into a smart home by installing 
a CASAS SHiB (see Fig. 1). Smart home sensors included passive infrared 
motion detectors and magnetic door sensors. Motion detectors were placed in 
each functional area of the home, 2-3 sensors per room. Magnetic sensors were 
positioned on external doors. The number of sensors in the homes ranged from 
12 to 25 (mean=17.29, std=3.58). 

The sensors are discrete event. Motion sensors generate a reading when 
new motion is sensed in the corresponding region of the home, and magnetic 
sensors generate a reading when the door is opened or closed. From these 
readings, digital behaviour markers are extracted. These include time spent (in 
seconds) for each sensor-defined region of the home, aggregated by hour and 
day. Additional markers are constructed that represent the number of 
transitions that occur between regions by hour and day. 
 
3.2 Behaviour Change Detection 

To tackle the challenge of quantifying and describing changes in behaviour patterns, we utilize our Behaviour Change 
Detection (BCD) algorithm. BCD analyses multivariate time series data across two time periods. Let X represent a 
multivariate time series. Data samples are segmented into daily intervals, D, which are decomposed into equal-sized (hourly) 
time intervals. Information in each interval is expressed by extracted features, D={d1,d2,..,d24}. We compare two windows, 
Wi and Wj, of data within time series X, each one week long. We compute a change score, C, between the windows using a 
symmetric version of the Kullback-Leibler (KL) divergence measure, shown in Equation 1. C computes the total distance 
between the pair of distributions across the set of 𝑎𝑎 digital markers. 

 
𝐶𝐶 = 𝐾𝐾𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑑𝑑𝑠𝑠,𝑘𝑘 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙
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In our analysis, we separate baseline weeks from intervention weeks. The baseline weeks represent the four weeks 

leading up to the start of the intervention, {B1, B2, B3, B4}. The intervention starts week 5 of the analysis and continues for 
the length of the participant’s involvement in the study, {I1, I2, .., Im}. In this study, the maximum value of m was 6 (weeks). 
We hypothesize that the change from B1 to Im will be larger than the change from B1 to any other baseline week, Bk. 

In addition to quantifying change for the population, we will look at the nature of the change that is detected for 
individuals in the study sample. BCD quantifies the amount of behaviour change between two weeks, but we also need a 

Fig. 1: CASAS motion sensors are placed on 
walls and ceilings; door sensors are placed on 
cabinets and exterior doors. 
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way to describe the nature of the change. For this task, we train a decision tree to act as a “virtual classifier” when 
comparing weeks Wi and Wj. In this method, data from Wi are labelled “negative” and data from Wj are labelled 
“positive”. A decision tree yields a human-interpretable tree of classification rules, which we can then use to analyze 
the most distinctive changes that occurred. 

We train a virtual classifier to describe change for the individual with the largest amount of change from baseline 
to end of the B-Fit program. This will help us understand the types of change that occur. In some cases, change may be 
related to the program and in others, change may be due to external events. We are interested in determining if the smart 
home can detect changes that are due specifically to new healthy behaviour adoption. To detect this, we will examine 
two individuals who self-reported high goal adherence values. We will focus the analysis on smart home data related to 
areas of the home where the target behaviour occurs. Next, we will train virtual classifiers to describe the difference in 
behaviour between baseline and the time when the target behaviour was initiated. We postulate that location-specific 
behaviours in particular will be detected by the smart home and described with the virtual classifier. 

 
4. Results 
 
4.1 Aggregated Weekly Change 

Fig. 2 graphs the aggregated change scores, accumulated over 14 participants. In this graph, Week 0 indicates the 
first baseline week. Because the week is compared with itself, the change score is always 0.0. The remaining weeks 
indicate the change score of each week in comparison with the first baseline week. The yellow dashed vertical line 
separates the baseline weeks from the B-Fit program weeks. No goal was introduced the first week of the program. 
Across the remaining 5 weeks, participants integrated between 1-3 new goals into their routine.  Finally, we fit a line to 
the points that include the last baseline week (immediately before the program initiation week) to the last program week. 

The results show that there is increasing change through the analysed data collection period. The amount of 
aggregated change ranges from .308 (week 2) to .453 (week 9). Fitting a line to the values starting the first week yields 
a positive slope of .027. The line starting week three (the last baseline week) yields a positive slope of .008.  
 

 

Fig. 2: Change scores for four baseline weeks and six B-Fit program weeks. Values are aggregated over 14 participants and are 
shown with corresponding confidence intervals. The vertical purple dashed line separates baseline from program weeks. No goal is 
introduced during the first week of the program. The green dotted line reflects the linear fit of change scores from the last baseline 
week to the last week of the healthy brain behaviour program. 
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4.2 Analysis of Largest Change 

While Fig. 2 supports the presence of overall change during the brain health program, the large confidence intervals 
indicates that the actual amount of change varies between participants. Additionally, this indicates the change is not 
necessarily due solely to the participant initiating and sustaining the selected healthy brain activities. To better understand 
understand the nature of these changes, we use a virtual classifier to analyse changes in behaviour patterns for three 
participants. 

We first look at behaviour changes for the participant that demonstrated the largest amount of change over the data 
analysis period. The slope of the fitted line for this participant was .054, a 100% increase from slope that was observed for 
the aggregated data. For this in-depth analysis, we examine the clinical notes for the participant during the corresponding 
time interval. Additionally, we train a virtual classifier to distinguish behaviour patterns between the baseline weeks and the 
brain health program weeks. Fig. 3 shows the virtual classifier for this participant. 

 
 
 

Fig. 3: Learned decision tree distinguishing class “baseline” (smart home-based behaviour markers collected during baseline weeks) from 
B-Fit (markers collected during B-Fit healthy behaviour program weeks). Left branches are followed when the tested condition is true. 
In the decision trees, “gini” indicates the gini impurity at that node. 

 
This participant selected new behaviours of increased outdoor walking, eating more fruits and vegetables, and focusing 

on the cognitive task of knitting. At first glance, the virtual classifier decision tree yields surprising results given the 
participant’s selected healthy behaviours. The tree shows that during the program weeks, less time was spent in the kitchen, 
more time was spent in the hallway, and more time was spent in the living room. Notes from the nurse research team shed 
light on these changes. During the program weeks, outside physical activity was paused due to the participant’s heart 
condition. Instead, the participant focused on walking in the hallway area for their physical activity goal. The participant 
used the living room recliner to knit, consistent with spending more time at that location to meet a cognitive activity goal.  

 
4.3 Analysis of Goal-Adherent Participants 

Finally, we look at specific changes in behaviour for two participants who self-reported that they consistently met or 
exceeded their weekly behaviour goals. The first case, shown in Fig. 4, was a participant who committed to work on puzzles 
each day at the table for cognitive stimulation, in addition to other goals that were performed outside the home. Focusing 
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solely on behaviour at the table, we see from the tree that the person spent more time there during the B-Fit weeks than 
during baseline.  
 

 
Fig. 4. Decision tree reflecting behaviour consistent with increased time working on puzzles at the dining table. 
 
 
 
 
 

 
Fig. 5. Decision tree reflecting more time at the kitchen sink obtaining water to drink and prepping fresh food. 

 
In the second case, we look at behaviour change for a participant who reported high adherence to the goals of 

drinking more water at the hours of 1000, 1600, and 2000. This person stated that their daily intake did increase and was 
sustained throughout the B-Fit program. The decision tree in Fig. 5 focuses on time spent at the kitchen sink during 
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baseline and B-Fit weeks. We see that time during the 1600 and 2000 hours were top node discriminators with half of the B-
Fit samples having greater overall time at the kitchen sink and time during 2000 during the B-Fit program.  

 
5. Discussion and Conclusion 

In this study, we examine the ability of smart home and machine learning technology to monitor everyday behaviour 
and detect changes that occur during a healthy brain behaviour change program. We offer a behaviour change detection 
algorithm that quantifies the change in digital behaviour markers between two windows of time, then use a decision tree 
virtual classifier to examine the types of differences that occur. 

Overall, the B-Fit weeks did correspond to larger changes in behaviour than occurred between the four baseline weeks. 
Examining the nature of the changes, we observed that some of the changes were due to external factors and health events, 
rather than planned changes in behaviour routines. These observations highlight an additional benefit of monitoring 
behaviour with smart home sensors and examining changes in digital markers. The largest changes accompanied health 
difficulties encountered by a participant. Detecting these changes may play an important role in early detection of health 
events and more effective treatment. For individuals who did stick to their selected goals, the changes in behaviour supported 
the planned incorporation of new behaviours, including completing puzzles, knitting, and drinking water. 

The study did face several limitations. Changes in behaviour may occur due to many factors, including visitors, holidays, 
and external events, in addition to changes in health and incorporation of new healthy behaviours. Additional work is needed 
to be able to identify and understand all influences on these changes from sensor data alone. Additionally, some of the 
selected behaviours, such as a stress management goal related to positive affirmations, could not be detected by the sensors 
while others were not performed within the home. For example, some participants elected to walk outdoor or go to a 
community library. Future work may consider use of wearable sensors to obtain more complete information on behaviour 
routines and analyse behaviour changes that result from interventions. 
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