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Abstract – In response to the rising prevalence of upper-limb motor disorders, particularly in post-stroke cases, assistive technologies 

are being developed to enhance patient self-sufficiency. This study explored the impact of incorporating a supernumerary robotic finger 

(SRF) on the cortical functional connectivity during activities of daily living (ADLs). SRFs have shown promise in addressing grasping 

difficulties, utilizing adaptive mechanisms for varied object manipulation. Neuroimaging techniques, including fMRI and EEG, have 

been employed to assess the neural responses to SRFs. Building on existing research, this study explored a novel approach by analyzing 

cortical functional connectivity. EEG sub-band analysis of the beta-band EEG was quantified using the Phase Locking Value (PLV) 

during the performance of simple ADLs. The results indicate task-specific modifications, which can be interpreted as changes in cognitive 

processing required during SRF utilization. The outcomes underscore the intricate relationship between external assistive devices and 

dynamic shifts in the cortical functional connectivity, providing valuable insights for the development of effective assistive technologies.  
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1. Introduction 
Upper limb movement and hand/finger directed movement are of paramount importance in their interaction with the 

environment, as they facilitate the manipulation of diversely sized and shaped objects, as part of the response to our 

immediate personal space consisting of cognitive and emotive adaptation. Recently, there has been a notable increase in post-

stroke cases, attributed to the rise in aging population. More than 80% of individuals with hemiplegia following a stroke 

experience varying degrees of upper-limb sensorimotor dysfunction due to damage to the central nervous system [1]. These 

motor disorders, particularly those affecting the upper limb, significantly impact ability to perform activities of daily living 

(ADLs). Consequently, researchers are actively working on developing technologies to enhance patient self-sufficiency and 

promote independent living [2]. 

Numerous assistive robotic devices are currently addressing the challenge of limited hand grasping capabilities. One 

option involves utilizing a supernumerary robotic finger (SRF). The designs and applications of SRFs vary, with assistive 

SRFs designed for individuals with grasping difficulties often enabling an adaptive cylindrical grip. This is achieved through 

the incorporation of soft links/joints or other adaptive grasping mechanisms [3],[4], which are effective for grasping objects 

of varied sizes, except for very small items that demand a precise grip. 

Neuroimaging methods such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) 

enable the measurement of neural activity linked to the use of SRFs. These techniques unveil cognitive and emotive 

adaptations, showcasing activation, plasticity, and sensory integration patterns. Hussain et al. [5] noted higher neural activity 

when participants used an MRI-compatible extra robotic finger after training compared to before training. This increased 

activity was observed in various brain regions such as the cingulate cortex, superior and inferior parietal lobules, and middle 

frontal gyrus on both sides of the brain. Similarly, Mehring et al. [6] used fMRI to identify a unique cortical representation 

in polydactyl patients, revealing the brain's capacity to adapt to an extra limb, and enhancing manipulative skills. EEG, 
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though limited to exploring cortical activity, can convey human intentions and adaptation for external device control. 

Liu et al. [7], using EEG and fMRI analyses, explored cerebral activity changes after a four-week SRF training, revealing 

significant alterations in cerebellar regions correlated with motor function improvements. 

On the other hand, brain functional connectivity was investigated in a number of studies to quantify cognitive load. 

Zeng et al. [8] developed a system for visualizing cognitive activity with EEG, exhibiting brain connectivity across EEG 

channels and regions using Pearson correlation coefficient and coherence. Similarly, the effectiveness of integrating 

deep learning with EEG-based functional connectivity metrics in the classification of mental workload was emphasized 

by Gupta et al. [9]. Mazher et al. [10] found that coherence combined with graph theory-based network analysis 

outperformed traditional methods in assessing cognitive load using EEG data. Nevertheless, there is a gap in the 

literature concerning the analysis of cognitive load and mental states through EEG functional connectivity analysis when 

utilizing additional robotic limbs for everyday tasks. 

Hence, this study presents a methodological approach for evaluating  adaptation to the integration of an additional 

robotic finger from EEG patterns recorded from the EEG sensors. It employs beta sub-band EEG to examine brain 

functional connectivity, utilizing Phase Locking Value (PLV) for quantification. Through this technique, changes in 

cerebral connectivity induced by the performance of routine ADL tasks using the supernumerary robotic finger can be 

identified and analyzed. While PLV has been utilized previously for brain functional connectivity analysis, our study 

uniquely applies it in the context of assessing adaptation to robotic augmentation in ADL tasks. To refine the 

connectivity networks, we employed a data-driven thresholding approach based on Global Cost Efficiency (GCE), 

enhancing the precision of our findings regarding cerebral adaptation to the SRFs. As a result, the current findings will 

not only establish a fundamental basis for advancing knowledge regarding the effects of SRF usage on mental states and 

cognitive function of the user, but also facilitate advancements in the design and functionality of the SRF. 

 

2. Methodology 
 
2.1. Participants 

The study included ten Khalifa University students, five females and five males. The experimental procedure and 

study methodology were approved by Khalifa University's Institutional Review Board (Ref. H21-027). All of the 

subjects were healthy, right-handed, and had normal vision, hearing, and color perception, as well as no history of 

neurological dysfunction, substance use disorder or long-term prescription usage. They sat comfortably in a cool, airy 

room, where they received a detailed presentation about the experiment. Subjects completed informed consent forms 

prior to participation,  

 
2.2. Experiment Setup 

The design of the SRF was based on a previous work [11], employing 3D printed rigid links (resembling finger 

phalanges) and soft links (mimicking joints). The rigid links are constructed from Polyactic Acid (PLA), while the soft 

links are made of Thermoplastic Polyurethane (TPU). The flexion-extension movement is achieved through a tendon-

driven actuation system. A DC motor (Dynamixel MX-64) pulls the tendon for finger flexion, while antagonistic elastic 

rubber bands facilitate finger extension. The SRF was worn on the wrist of the dominant hand. A user-friendly push-

button control system was implemented, allowing users to trigger flexion or extension with two buttons integrated into 

a wearable ring on the non-dominant hand. 

EEG data were recorded using the Nexus-32 system (Mind Media, Herten, Germany). The cap was outfitted with 

19 Silver/Silver Chloride wet electrodes arranged in accordance with the 10-20 international standard (Fig. 1). Notably, 

the Nexus-32 does not use an electrode as a reference; instead, it employs a hardware common average reference. Data 

were collected at a sampling rate of 256 samples per second. 
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Fig. 1: EEG 19 electrodes are positioned according to the 10-20 international system. 

 

2.3. Data Acquisition 
The experimental design incorporated three distinct ADLs for the participants to complete: pouring water, sorting 

shapes, and a driving task on a driving simulator. Each subject underwent two recording sessions (phases). In the first phase, 

they performed the tasks using their dominant hand. In the second phase, the same tasks were repeated, but this time with an 

SRF affixed to their wrist. The order of these tasks was randomized among subjects.  

For the "Pouring water" task, subjects were instructed to hold a 200-ml plastic bottle of water in their dominant hand (or 

SRF), pour the water into a glass, hold it, and drink from the glass. In the "Driving" task, participants drove for two minutes 

using a driving simulator. The steering wheel and paddles were linked to a Sony PlayStation 4 running a bus simulator game 

(created by Icebytes, Contendo Media, TML Studios, and Stillalive Studios). In the "Shapes sorting" task, subjects were 

asked to pick one object at a time with their dominant hand (or SRF) and insert it into the matching opening in the box. The 

experimental layout, comprising the three tasks and the two phases, is depicted in Fig. 2. 

 

 
Fig. 2: Experiment design and setup including the two phases (with SRF and without SRF) and the three tasks (pouring water, driving, 

and shapes sorting). 

 
2.4. EEG Preprocessing and Analysis 

The raw EEG data were pre-processed using MATLAB R2022b and the EEGLAB v2021.0 toolbox to ensure data 

quality [12]. Band-pass filtering was applied with a passband of 0.5 Hz to 40 Hz. Subsequently, the signals were re-referenced 

to the common average reference. The Independent Component Analysis (ICA) method in EEGLAB was used to manually 

eliminate artifacts caused by eye blinks and movements. Following this, baseline subtraction was applied to the cleaned EEG 
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data, and the signals were divided into target-related EEG epochs. Finally, the clean EEG data were divided into delta 

(0.5–4Hz), theta (4–8Hz), alpha (8–12Hz), beta (12–30Hz), and gamma (30–40Hz) frequency bands. 

Functional connectivity was estimated by applying the Hilbert Transform to the bandpass-filtered epochs, utilizing 

PLV [13]. As a result of its lack of reliance on presumptions regarding the data, the PLV is particularly suitable for the 

examination of non-stationary and non-linear signals [14]. Additionally, PLV permits the evaluation of phase coupling 

without the impact of zero-lag interference and is less sensitive to noise. In a time window, the PLV between channels 

𝑣 (𝑃𝐿𝑉𝑢𝑣) is calculated as follows: 

 

𝑃𝐿𝑉𝑢𝑣 =
1

𝑛
× |∑𝑒𝑗[𝜙𝑢(𝑡𝑘)−𝜙𝑣(𝑡𝑘)]

𝑛

𝑘=1

| (1) 

 

where, 𝜙𝑢 and 𝜙𝑣 represent the instantaneous phases of the EEG bands associated with channels 𝑢 and 𝑣 at time 𝑡𝑘, 

respectively, and 𝑛 denotes the time window length. To filter the connectivity networks, a data-driven thresholding strategy 

based on maximizing Global Cost Efficiency (GCE) was implemented. A 4D connectivity matrix was calculated for each 

individual and frequency band. This matrix included four key elements: phase, task, and the two electrodes connections 

involved. The matrix, therefore, shows the relationships between different pairs of electrodes. Analysis was limited to the 

EEG beta band due to its association with attention, cognitive processing, and mental effort as well as its high sensitivity to 

mental load state and stress [15]. 

Furthermore, since this research aimed to investigate how the brain adapts when utilizing SRF for daily living tasks, a 

statistical analysis was conducted between the two phases: phase 1 (without SRF) and phase 2 (using SRF). The Kolmogorov-

Smirnov method was utilized to examine the normal distribution of the data. The evaluation of connection metrics between 

the phases was performed applying a two-sample t-test, employing the Bonferroni–Holm correction method to allow for 

multiple comparisons. Prior to the statistical analysis, all the statistical analyses were tested at the 95% significance level. 

 

3. Results 
In this study, we explored a novel approach to assess the brain's adaptation when integrating an additional robotic 

finger. We analyzed brain functional connectivity using PLV during daily living activities performed with the dominant 

hand (Phase 1) and repeated the analysis during the same activities with the added robotic finger (Phase 2). The robotic 

finger was activated by push-button with the contralateral hand. The investigation of Phase 1 provides insights into the 

impact of these activities on the EEG beta band  functional connectivity, whilst the analysis of Phase 2 offers valuable 

indications about the influence of incorporating the robotic finger into the activities on the brain's adaptive processes. 

Fig. 3 displays the findings of the EEG beta band functional connectivity estimation using the PLV measure across 

both phases and all three tasks. PLV connectivity matrices were computed independently for each subject during phases 

1 (without employing the SRF) and 2 (utilizing the SRF) before being averaged for all subjects. By employing GCE, 

weak connections in each task matrix were eliminated, retaining only actual connections. A decrease in PLV, indicates 

a weakening of the functional connection network, such as between the frontal and parietal-occipital lobes of the brain 

(shown as yellow and white nodes). Similarly, an increase in PLV indicates a corresponding expansion in the 

connectivity network, which paralleled the observed increase in connectivity among the frontal brain regions (red nodes). 

Furthermore, the resultant phase 1 minus phase 2 connectivity network (Δ-GCE-PLV) underwent further filtration 

using a t-test at 𝑝<0.05. The matrix/experiment disparity, depicted in Fig. 4 (a-c), is constrained within a range of -1 to 

+1. It depicts notable disparities in connectivity networks during the performance of the "pouring water" (Fig. 4a), 

"driving" (Fig. 4b), and "shapes sorting" (Fig. 4c) tasks between the phases of "non-using" and "using" SRF. Channels 

exhibiting positive values (tending towards a red color) indicate a reduction in functional connectivity when the SRF 

was utilized. Conversely, negative PLV values (blue color) signify heightened functional connectivity within these brain 

regions when the SRF was employed for the specified task. 
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A notable rise in brain connectivity for EEG channels (F8, T4, and T6) when pouring water and using the SRF was 

observed, suggesting increased vigilance and reduced stress, as noted by Al-Shargie et al. [16]. In contrast, a decline in 

connectivity was noted between the memory function-related channel, T3 and T5 a cognitive processing channel Pz, and C3, 

and C3, which indicates sensorimotor integration. Combined the decreased activity in these channels may indicate heightened 

heightened mental stress. Similar outcomes emerged in the driving task, with the T5 channel consistently showing reduced 

reduced connectivity compared to other channels (O1, O2, T6, P3). However, for the "sorting shapes" task, the T4 channel 

channel displayed increased connectivity with cognitive processing / motor planning (F3), attention (Fp1), and judgment / 

coordination (Fp2) regions. This could be attributed to the nature of the task, involving actions such as grasping shapes 

correctly, deciding on matching holes, and orienting shapes for optimal fit. 

 

Without SRF 

   

 With SRF 

   
 (a) (b) (c)  

Fig. 3: PLV based functional connectivity network for the tasks (a) pouring water, (b) driving, and (c) shapes sorting. 
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(c) 

Fig. 4: Δ-GCE-PLV connectivity maps for the tasks (a) pouring water, (b) driving, and (c) shapes sorting. Blue color indicates 

increased connectivity (upon using SRF) whereas red color indicates decreased connectivity (upon using SRF). 

 

4. Discussion 
Cortical phase synchronization and connectivity was significantly altered when a robotic finger was utilized to 

perform daily tasks, according to the EEG findings. Similarly, the decline in PLV weights observed in various brain 

regions indicates a state of reduced information transfer and processing both within and between cortical regions, 

suggesting that the ability to perform duties requiring constant vigilance will likely decline. These findings are consistent 

with earlier research on mental stress, which found a substantial reduction in connectivity among the frontal, parietal, 

and left-frontal-parietal regions for vigilance decrement and mental stress tasks [17],[14]. Similarly, enhanced functional 

connectivity was associated with increased cognitive acuity and reduced stress. However, study [18] showed that under 

certain mental stress situations, an increase in functional connectivity between cortical areas is occasionally observed. 

Hence greater connectivity could work as an adaptive mechanism against stress-related impairment of cognitive 

processes that subjects might have experienced while using SRF in the current research. Considering the broader issue 

of cognitive adaptation, the current findings highlight the complex interplay between external influences, such as the 

incorporation of a robotic finger, and dynamic changes within the brain's functional connectivity map. 

 

5. Conclusion 
The findings of this study provide valuable insights into the cognitive adaptation when utilizing an additional robotic 

finger for daily tasks. The analysis of brain functional connectivity using PLV reveals task-specific alterations during 

SRF utilization. The observed changes in connectivity patterns suggest a delicate impact on brain dynamics, with 

implications for cognitive processing and mental stress. Specifically, changes in EEG characteristics may indicate 

changes invigilance and reduced stress during the water pouring task, while mental stress was highlighted in memory 

function-related channels during this task. Similarly, the driving task showed consistent reductions in connectivity, 

indicating potential implications for vigilance. The "sorting shapes" task displayed improved connectivity in cognitive 

processing, attention, and judgment regions, possibly reflecting the different nature of the task, which required more 

cognitive input and decision making. These findings underscore the complex interplay between external assistive devices 

and dynamic changes in the brain's functional connectivity, shedding light on the broader issue of brain adaptation in 

response to technological interventions. Further research is warranted to explore the long-term implications and potential 

applications of these findings in developing more effective assistive technologies for individuals with upper-limb motor 

disorders. 
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