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Abstract - Increasing awareness of walking-related issues leading to falls, particularly in older adults, has highlighted this important 
concern. Even though walking is a fundamental human movement, studying it is difficult because it involves intricate brain, nerve, and 
muscle coordination. Neurodegenerative disorders like Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD), and Huntington's 
disease (HD) are frequently associated with walking limitations, highlighting the critical need for precise diagnostic tools. This study 
employed a comprehensive approach, delving into the intricate examination of gait patterns in individuals with neurodegenerative 
disorders. We used ground reaction force (GRF) step data from the Physionet public database, which converted into the time-frequency 
domain using continuous wavelet transform (CWT). We applied feature extraction techniques to identify unique gait characteristics for 
each disorder. Our findings revealed significant differences in gait among neurodegenerative diseases, with Parkinson's disease exhibiting 
the highest variability, ALS showing less variability, and Huntington's disease falling in between. These results illustrate the complex 
nature of walking issues in neurodegenerative diseases, highlighting the necessity of specific diagnostic approaches. 
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1. Introduction 
       Globally, gait problems have significantly increased, resulting in about 646,000 terminal falls annually, most commonly 
among those aged 50 and older [1]. Gait disorders stand as the second most common cause of accidental or unintentional 
injury deaths worldwide, trailing only behind traffic accidents. Moreover, they play a significant role in accidental injury 
deaths occurring outside of transport contexts[2]. In addition, gait disorders consume between 0.85% and 1.5% of healthcare 
expenditures [3]. Given the high costs of medical treatments, it's crucial to identify and directly help individuals with gait 
problems who are at risk of falling [4]. The increase in gait problems leading to falls globally, with significant mortality 
rates, especially among older adults, underscores the urgency to early address this issue. While walking is inherent to human 
activity, analyzing it poses challenges due to the intricate coordination of the brain, nerves, and muscles. Researchers across 
various disciplines have extensively studied human motion to assess patient states, facilitate rehabilitation, and devise 
treatments [5]. Neurodegenerative disease refers to disorders arising from brain and spinal cord cell degeneration, resulting 
in impaired movement[6]. Progressive neurodegenerative disorders such as ALS, PD, and HD are frequently associated with 
the damage of gait.  
       This growing concern over gait disorders, mainly due to neurodegenerative diseases, directs towards a focused 
examination of how these conditions alter walking patterns. Evaluating gait abnormalities in neurodegenerative diseases such 
as ALS, HD, and PD involves analyzing spatial and temporal gait factors, with distinct characteristics identified for each 
condition[7]. Specifically, ALS patients have slower walking speeds and extended stride durations, unlike those with HD 
and PD, who demonstrate variable stride lengths and heightened gait variability [8]. These differences notably underscore 
the profound effects of impaired motor function, a key symptom stemming from disruptions within the brain’s control 
network, a finding well-supported across various [9][10]. Building on this foundation, further research has delved deeper 
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into the nuances of gait disruptions. Advanced studies utilizing techniques like detrended fluctuation analysis and multi-
resolution entropy analysis have shed light on the extent of stride-to-stride variability. These methods have been particularly 
revealing in ALS cases compared to HD and PD, showcasing the distinct gait dynamics within each disorder. Such detailed 
investigations reinforce the urgency for precise diagnostic and therapeutic approaches to address the unique gait 
abnormalities associated with each neurodegenerative condition[11]. 
       Neurodegenerative Disorders (NDDs) are a subset of neurological disorders characterized by the progressive loss of 
neuron structure or function, often affecting adults and associated with aging. Common examples are Parkinson’s, 
Huntington's, and ALS [12]. Currently, the most common method for diagnosing and evaluating progress in people with 
NDD is to use several questionnaires. The use of questionnaires is commonly acknowledged to provide particular results. As 
a result, in modern clinical practice, conducting an impartial evaluation of the patient's physical functioning is critical. Using 
this assessment, medical practitioners can develop a more rational treatment strategy and perform a more rigorous evaluation 
of therapeutic outcomes. Previous studies have indicated a strong interest in applying numerical gait analysis as a non-
invasive technique for detecting gait disorders. With the rapid advancement of machine learning, many approaches for 
extracting features and classifying data have been used to create an automated and precise diagnosis classification for clinical 
supporters. 
       The primary objective of this study is to identify gait characteristics in older adults (aged 50 and above), differentiating 
between control gait patterns and those affected by neurodegenerative disorders (NDD) through feature extraction. Previous 
studies focus on various age groups. This research specifically focuses on the older adult population. Previous research 
employed statistical and nonlinear computing techniques for extracting insights from gait rhythm data. This study 
engagements Continuous Wavelet Transform (CWT) to enhance the accuracy of feature extraction [9], [10]. This method 
involves converting CWT plots into images from which pertinent features are extracted. These features are utilized to 
construct a box model that visually compares healthy gait patterns and those altered by NDD. 
 
2. Materials and Methods 
       The methodology, illustrated in Figure 1, involves four key steps: collecting gait rhythm data from older adults, pre-
processing this data to filter noise, using MATLAB to transform the data into time-frequency spectrograms with wavelet 
transform, and then extracting statistical features such as mean, standard deviation, instantaneous RMS, and variance. These 
features are crucial for differentiating healthy gait patterns from those altered by gait diseases. 
 

 
Fig. 1: Flowchart of the proposed categorization method for the gait of NDD patient 

 
2.1. Dataset 
        Figure 2 shows the Gait dataset collected through the Physionet public database[11]. Shows the prevalence of 
neurodegenerative diseases among specific subjects. The ground reaction force (GRF) step data from the Physionet database 
was applied to investigate and diagnose gait disorders. The force under each subject's foot is measured using force-sensitive 
resistors as an integral component of the gait analysis. In this experiment, eight sensors were implanted in each subject's feet 
to measure the vertical ground reaction force. The data consists of locomotion patterns intentionally omitted during the 
physical exertion of both male and female participants. The database contains information on five healthy subjects: 7 patients 
with Parkinson's disease, five patients with Huntington's disease, and four patients with Amyotrophic Horizontal Sclerosis 
(ALS). The gait parameters for each subject, including stance, swing, double support interval, and stride of the left and right 
foot, are collected in the Physionet database, as illustrated in Figure 1. Regarding every subject, the clinical  [11].  
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Fig. 2: Data collected using Ground reaction force sensor. 

 
       Table 1 briefly outlines key factors, statistically summarizing our subjects' clinical profiles. Our investigation targets 
individuals aged 50 and above. From the dataset, we specifically selected five healthy individuals, alongside five diagnosed 
with Huntington's disease, seven with Parkinson's disease, and four with ALS, enabling precise analysis of gait patterns and 
clinical data among older adults affected by a range of neurodegenerative disorders. Table 1 delineates the demographic and 
physiological traits of the four groups—control, Huntington's (Hunt), Parkinson's (Park), and ALS—showcasing means and 
standard deviations for age, height, weight, and gait speed. This comparative analysis illuminates the distinct differences 
between individuals across the different disease states, offering valuable insights into their unique conditions. 
 

Table 1: Basic information about the people in the Gait dataset. 
 

Statistical 
Parameter 

 

Mean ± STD 
Age (Year) Height(m) Weight(kg) Gait Speed(m/s) 

CO 
 

62.6 ± 8.63 1.836 ± 0.107 74.6 ± 13.02 1.294 ± 0.207 

HUNT 
 

57.2 ± 6.24 1.778 ± 0.137 64 ± 10.8 1.104 ± 0.142 

PARK 
 

66.5 ± 9.06 1.991 ± 0.119 87.375 ± 13.684 1.3325 ± 0.27025 

ALS 
 

61.75 ± 7.071 1.797 ± 0.035355 89.0375 ± 13.913 1.2275 ± 0.099925 

 
2.2 Feature extraction 
       For feature extraction, the study selected 21 subjects, transforming gait signals from their original time domain into 
frequency-time domain. This transformation was achieved using MATLAB's contour function; this step primed the data for 
deeper analysis. Following this transformation, the data was rendered into image form, allowing for the extraction of critical 
statistical measures, which are mean, variance, standard deviation, and instantaneous root mean square (RMS) of the gait 
signals—which are essential for identifying and characterizing the gait patterns under study.         
       Mean: - often denoted by x̄ (pronounced "x-bar"), is a measure of central tendency in a dataset. It represents the average 
value of the data points. Mathematically, the mean of a dataset X with n data points x_1, x_2, ..., x_n is calculated as: 

Mean (𝑥𝑥‾) = 1
𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖                                                                  (1) 

 Eqn (1) x̄ is the mean of the dataset. Xi represents each data point and denotes summation over all data points. In the context 
of the given data, each row represents a sample or observation, and the "Mean" column contains the mean values calculated 
from specific measurements or features associated with each observation. 
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       Variance (VAR): - A measure of the spread or dispersion of data points. In statistics, it quantifies how much the values 
in a dataset differ from the mean (average) value. Mathematically, the variance of a dataset X with n data points x_1, x_2, 
..., x_n is calculated as: 

                                                                    VAR (𝑋𝑋) = 1
𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − 𝑥𝑥‾)2                                                                  (2) 

 Eqn (2) x̄ is the mean of the dataset. Xi represents each data point. Σ denotes the summation of all data points. In the context 
of the given data, each row represents a sample or observation, and the "VAR" column contains the variance values calculated 
from specific measurements or features associated with each observation. 
       Standard deviation (Stdev): - Often denoted by σ (sigma) or s, is a measure of the dispersion or spread of data points 
around the mean. It quantifies the extent to which the values in a dataset deviate from the mean value. Mathematically, the 
standard deviation of a dataset X with n data points x_1, x_2, ..., x_n is calculated as: 

                                                                  Stdev (𝑋𝑋) = �1
𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1  (𝑥𝑥𝑖𝑖 − 𝑥𝑥‾)2                                                              (3) 

  Eqn. (3) σ is the standard deviation of the dataset. x̄ is the mean of the dataset. x_i represents each data point. Σ denotes the 
summation of all data points. Sqrt denotes the square root. In the context of the given data, each row represents a sample or 
observation, and the "Stdev" column contains the standard deviation values calculated from specific measurements or 
features associated with each observation. 
       Instantaneous RMS: - Also known as Root Mean Square, is a measure commonly used in signal processing and 
engineering to quantify the amplitude or power of a time-varying signal. It measures the average magnitude of the signal 
over a short duration, often referred to as an "instant" in time. Mathematically, Instantaneous RMS of a signal x(t) sampled 
at discrete time points t_1, t_2, ..., t_n is calculated as: 

                                                            Instantaneous RMS = �1
𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1  (𝑥𝑥𝑖𝑖)2                                                           (4) 

Eqn (4) sqrt denotes square root. X, I represent the amplitude of the signal at time point i. Σ denotes summation over all time 
points, the total number of samples. In the context of the given data, each row represents a sample or observation, and the 
"Instantaneous RMS" column contains the RMS values calculated from specific measurements or features associated with 
each observation. 
 
3. Result: 
     Figure 3 presents original gait data plots illustrating the frequency of ALS, Huntington's, and Parkinson's diseases over 
time compared to healthy groups. The graphs show that people with ALS have changeable step frequency, people with 
Huntington's disease have erratic gait patterns, and people with Parkinson's disease have alternating episodes of stability and 
high frequency, which shows how their unique gait is affected. The control group's plot has a more stable frequency, which 
shows a steady walking rhythm. 
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Fig 3: Time-Domain Gait Patterns in Neurodegenerative Disorders vs. Healthy Controls 

 
Figure 4 shows time-frequency domain plots, which can be used to look at the complex patterns of gait frequencies in 

people with neurodegenerative diseases compared to a healthy control group. These graphs use contour lines to show how 
the strength of gait frequencies changes over time. This shows the rhythm and any irregularities in the way each group walks. 
The contour lines in the ALS group are closer together, suggesting a more stable walking pattern. In Huntington's group, on 
the other hand, the contour lines are spread out more, which indicates a less stable walking pattern. The outlines of the 
Parkinson's disease plot are both closely packed and spread out, which shows how the patient's patients' walking frequency 
changes over time. On the other hand, the healthy control group has a more even contour distribution, which means they 
walk at a steady pace. These plots give detailed visual information that lets specific features linked to walking patterns be 
extracted. It is possible to isolate and measure unique gait traits because frequency changes over time are apparent. This can 
be very important for determining how different neurodegenerative conditions affect moving. 
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                     Fig. 4: Gait time-frequency Gait Patterns in Neurodegenerative Disorders vs. Healthy Controls. 

 
       Figure 5 shows box plots of how the walking styles of people with Parkinson's, ALS, Huntington's, and a healthy control 
group are different. The analysis of the box plots showed that the groups' walking parameters were intensely different. 
Parkinson's patients' walking speeds were all over the place, with a median of 242 and an interquartile range of 238 to 246, 
which shows how the disease affects people's movement skills differently. In contrast, the ALS group had a slightly faster 
median walking pace of around 244. Given the relationship of ALS with motor function impairment, the narrower range of 
speeds within this group suggested that it has a more significant impact on walking speeds. It was seen that healthy people 
walked more steadily, with a narrow interquartile range showing regular walking patterns that aren't generally changed by 
neurodegenerative diseases. Within the Parkinson's group, instantaneous RMS values showed the most significant changes 
in walking speed, showing that their gait was significantly more variable. Not surprisingly, the healthy group had the lowest 
marks, which showed they walked steadily. 
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Fig. 5:  Box plot of different Gait characteristics of this study. 

 
       The comprehensive examination of gait metrics utilizing the box model demonstrates notable heterogeneity among 
neurodegenerative disorders. For example, Parkinson's illness demonstrates significant variability in mean values, standard 
deviation (Stdev), Instantaneous RMS, and Variance (VAR), suggesting a broad spectrum of gait characteristics within this 
condition. In contrast, amyotrophic lateral sclerosis (ALS) exhibits reduced variability across these dimensions, indicating a 
higher degree of consistency in gait patterns than in Parkinson's disease [8] [13]. Huntington's disease is situated between 
amyotrophic lateral sclerosis (ALS) and Parkinson's disease, with a modest degree of variability [7]. The findings align with 
prior research highlighting the significance of motor function impairment as a primary characteristic of NDD  [8], [14]. In 
general, amyotrophic lateral sclerosis (ALS) displays the highest level of consistency in gait patterns across different 
assessments. In contrast, Parkinson's disease shows the highest degree of variability, highlighting separate patterns of 
variability within each gait condition [15]. Those different walking patterns between the groups will be helpful knowledge 
for machine learning in the future. Figure 4 shows some differences and trends that could help scientists make better models 
for predicting and diagnosing neurodegenerative diseases. 
 
 5. Conclusion 
           Finally, this study studied gait patterns in older people with neurodegenerative illnesses such as Parkinson's disease, 
Huntington's disease, and Amyotrophic Lateral Sclerosis (ALS). The Study identified unique gait characteristics linked with 
each disorder using ground reaction force (GRF) data from the Physionet public database and advanced feature extraction 
function. This study's findings revealed substantial differences in gait measures across many neurodegenerative diseases. 
Parkinson's illness had the most variability, ALS had less, and Huntington's disease was somewhat in the middle. This 
variation highlights the complicated nature of gait abnormalities in neurodegenerative diseases, emphasizing the need for 
specialized diagnostic techniques. 
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