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Abstract - Lung diseases are a major health problem and one of the leading causes of death worldwide. Chest X-ray (CXR) is one of 
the most common radiological examinations for screening thoracic diseases. Despite the existing methods that have achieved significant 
progress in the classification of thoracic diseases, none of the studies take into account the presence of artifacts such as wires or objects 
in the images. Based on the above problem, in this paper we present a novel methodology for clustering sharp images from images 
containing artifacts, and then perform the classification exclusively to the cluster containing sharp images without artifacts. 
We selected CXR of pneumonia and normal cases from the ChestX-Ray14 dataset and performed histogram equalization as preprocessing 
technique. By applying the DenseNet-121 model exclusively to the cluster containing images without artifacts, we achieved a higher area 
under the curve (AUC) than the model applied to all images. Our approach thus achieved an AUC of 79.58% for pneumonia and normal 
images classification. To evaluate the effectiveness of our method, we conducted experiments on another disease, namely consolidation. 
The results demonstrated that our method is promising, highlighting its potential for broader applications in lung disease classification. 
This research highlights the importance of considering the presence of artifacts when diagnosing lung diseases from radiographic images. 
The code will be available upon request. 
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1. Introduction 

Lung diseases pose a major threat to global health, ranking as the third most leading cause of mortality worldwide [1], 
and causing around five million deaths annually [2]. Consequently, early diagnosis of lung diseases is essential for effective 
treatment and to reduce the risk of mortality [3]. Chest X-ray (CXR) is the most commonly imaging diagnostic technique 
used to identify lung diseases [4], including pneumonia [5] due to its simple, rapid and cost-effective procedure [6]. However, 
manual observation and interpretation of CXR is a time-consuming process. In addition, distinguishing different types of 
diseases from chest X-ray images is a difficult task for an expert, and can lead to missed detections and therefore life-
threatening diagnostic errors due to the complex nature of chest X-rays [7]. 

Recently, with the advancements of technology, Computer Aided Diagnosis (CAD) systems were proposed to analyse 
chest radiographs in order to reduce the workload of radiologists and to improve clinical diagnosis [8]. More recently, Deep 
Learning (DL) has been widely investigated due to its general applicability to problems involving automated feature 
extraction and image classification tasks [9], [10]. 

Many researchers focused on developing deep learning-based techniques for disease detection and classification. 
Rajpurkar et al. [11] developed CheXNet, a 121-layer DenseNet model, for pneumonia detection from the ChestX-Ray14 
dataset. This model exceeded the average performance of radiologists on the pneumonia detection task and achieved an area 
under the curve (AUC) of 76.8%. Souid et al. [12] proposed the classification and prediction of lung pathologies in frontal 
chest X-rays using the MobileNetV2 model, supplemented by CNN layers. Their approach obtained an AUC of 73.3% for 
the pneumonia classification. Ma et al. [13] proposed a cross-attention network scheme for thoracic disease classification, 
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using an attention loss that forced the model to focus more accurately on pathogenic areas. The model achieved an AUC 
of 72.2% for the classification of pneumonia. 

However, none of the previous studies consider the presence of artifacts in CXR images. As illustrated in Figure 1, 
X-ray images include artifacts such as objects, medical devices, wires and electrodes, and may be low-quality. These 
artifacts may introduce noise and undermining the overall quality of the CXR image, since they can mask important 
anatomical areas as well as introduce irrelevant features within the X-ray image. This can impact the effectiveness of 
machine learning models and the reliability of medical diagnoses. Consequently, it is crucial to develop strategies that 
consider the presence of artifacts in X-ray images. This will improve the classification performance of deep learning 
models, contributing to the establishment of precise and reliable diagnoses and thus improving the quality of healthcare 
for patients. 

Fig. 1. Examples of chest X-ray images with artifacts and bad quality captures. 
 
It is important to highlight that the issue of missing labels for images containing electronic components may occur 

in any database. This underscores the broader importance of clustering (unsupervised labelling) in efficiently processing 
image data, especially in the medical field. This contributes to enhanced data quality, resulting in more precise and 
meaningful results in the classification of medical images, thus reinforcing the efficiency of diagnostic analyses in the 
healthcare sector. For this purpose, our work’s novelty is rooted in the use of a novel methodology for clustering sharp 
images from images containing artifacts, and then perform the classification exclusively to the cluster containing sharp 
images without artifacts. As a result, by eliminating images containing artifacts and preventing artifacts from introducing 
noise into the classification model, our method improves classification performance and reinforces the reliability of 
diagnoses based on chest X-ray images, which is essential for high-quality healthcare. 

This paper is organized as follows: Section 2 presents the materials and methods used, including the dataset, the 
preprocessing method and the clustering technique, and the classification process. In Section 3 and 4, we present and 
discuss the results obtained using the ChestX-ray14 dataset. Finally, in section 5, we conclude our work and present the 
perspectives. 

 
2. Material and methods 
2.1. Dataset 

The ChestX-Ray14 dataset [14] is extracted from the clinical PACS databases in the hospitals affiliated to National 
Institutes of Health Clinical Center and includes 112,120 frontal view chest X-ray images from 30,805 unique patients. 
Each CXR is labelled with binary labels for 14 different diseases. The CXR is labelled as “no finding” if none of these 
diseases were detected. All CXRs are in PNG format and have a size of 1024 × 1024. The dataset also contains other 
data such as the sex and age of the patient and the view position of the X-ray. In this database, 322 images are labelled 
as pneumonia and 60,361 images are no finding. To address class imbalance, we down-sampled only the no finding 
images to obtain 354 samples. Therefore, we conducted our experiments on a total of 676 images. 

The database lacks labels for images containing artifacts, and the use of such images may introduce electronic noise 
in the classification process. To address this issue, it is important to implement clustering as a preliminary step. This 
involves identifying images with electronic components to effectively minimize the impact of electronic noise, leading 
to an improvement in the performance of the classification. 
2.2. Overview 

For the classification of pneumonia and normal X-ray images, a total of 676 X-ray images were used. As illustrated 
in Figure 2, our methodology comprises three major steps: preprocessing, clustering, and classification. In the 
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preprocessing phase, we applied the Histogram Equalization technique to amplify contrast and enhance the visibility of 
image details. Following this, features related to contours and texture were extracted. The subsequent step involved clustering 
clustering through the application of the K-means algorithm. This process yielded two clusters: the first comprising unclear 
unclear images with wires and electronic objects, and the second consisting of sharp images without artifacts. So, in the rest 
rest of our study, we worked only on the second cluster containing images without electronic objects to eliminate the noise 
noise effect caused by the other group containing images with artifacts. This improves model performance since it will be 
able to focus specifically on lung features that are relevant for disease classification, without being disturbed by interference 
related to electronic objects. Therefore, for the second cluster, images were resized to 224 × 224 pixels and normalized in an 
interval [0;1]. 20% of the data was used as test data, 10% as validation data and 70% was devoted to training the data 
(randomly chosen). Thereafter, the classification was performed using the DenseNet-121 model. The performance of our 
model was quantified by the Area Under the Curve (AUC). In the literature, AUC remains a predominant metric for 
evaluating the performance of lung disease classification models, which justifies its choice in the context of our study. 

 
Fig. 2: Overview of the proposed methodology. 

 
2.3. Preprocessing 

In the preprocessing, Histogram Equalization is used for image contrast enhancement. The histogram equalization 
technique aims to achieve a uniform distribution of gray levels within an image, thereby adjusting the brightness and contrast 
of dark and low-contrast images, leading to an improvement in overall image quality [15], [16]. This contributes to the 
enhancement of image details, the sharpening of contours, and an overall improvement in image visual quality. Figure 3 
visualizes the enhancement result of X-ray image using Histogram Equalization.       
      

Fig. 3: A sample of chest x-ray image: (a) original image, and (b) sharpened image using the Histogram Equalization technique. 
 

2.4. Clustering 
Following the preprocessing, since images with electronic components are unlabelled in the database and may introduce 

noise during classification, we proposed an image preprocessing module that will separate images into two clusters: one 
containing images with artifacts and the other containing images without artifacts. To achieve this, we initiated the process 
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by extracting relevant features related to texture and contours from the images. Subsequently, a K-means method was used 
to effectively separate the images into two clusters. 

1- Feature extraction: Feature extraction, especially related to contours and texture of X-ray images, is essential for 
interpreting and understanding the information topology within the images. The identification of subtle details in contours 
and texture allows K-means to accurately differentiate between sharp images and those affected by artifacts. To achieve 
four characteristics were computed in this study, including: 
• Variance of Gradients feature: This feature computes the horizontal and vertical partial derivatives of the image using the 

Sobel filter. These derivatives serve to quantify the intensity variations among pixels, offering valuable insights into how 
brightness changes in different directions across the image. The subsequent step involves combining these derivatives to 
calculate the magnitude of the gradient. Specifically, it assesses the variance of gradient magnitude values across the entire 
image. Regions with complex or rough textures may exhibit higher gradient variance compared to regions with more 
homogeneous textures. Consequently, the variance of gradients feature is sensitive to local texture variations. Therefore, 
this feature serves as a valuable indicator of the gradient variation across the entire image. 

• Lung sharpness feature: This feature assesses the sharpness of lung contours in a X-ray image by using the Sobel filter to 
compute horizontal and vertical partial derivatives. These derivatives highlight variations in pixel intensity related to 
contours. The combination of these partial derivatives yields the gradient magnitude, representing the sharpness of image 
contours and measuring the precision of brightness changes. A higher gradient magnitude indicates sharper and more 
well-defined contours. To specifically focus on the lung region of interest, a mask is created to isolate this area, improving 
measurement efficiency by excluding unnecessary information outside the lungs. This mask is applied to the previously 
computed contours, ensuring that only contours within the lung region contribute to the sharpness assessment. A high 
value for this feature indicates well-defined and sharp lung contours, while reduced sharpness may indicate the presence 
of artifacts or unwanted objects affecting image quality. 

• Black-white ratio feature: This feature evaluates the distribution of black and white pixels in an image by calculating the 
percentage of black pixels (indicating low intensity) and white pixels (indicating high intensity). Essentially, it quantifies 
the density of dark structures in comparison to light areas within the image. In the context of CXR images, this 
characteristic aids in distinguishing lung areas (typically darker) from non-lung areas (typically lighter), contributing to 
the identification of lungs and objects in the image. A high black ratio may suggest high tissue density, providing insights 
into the density of anatomical structures. Conversely, a high white ratio may be indicative of artifacts, overexposure, or 
the presence of unwanted objects that alter the brightness distribution. 

• Histogram of Oriented Gradients (HOG) feature: HOG features offer a robust representation of gradient patterns in an 
image. This method involves dividing the image into cells and computing gradients in each cell, capturing local 
orientations of contours [17]. The process continues by calculating the histogram of oriented gradients, normalizing 
results block-wise, concatenating 2 × 2 grid cells, and generating the HOG descriptor at each grid location [18]. 
Essentially, HOG features analyse how changes in brightness occur in different directions within the image. Widely 
recognized for their effectiveness in object detection and pattern recognition [19]–[21], HOG features can discern specific 
gradient patterns characteristic of structures or objects. This makes them a valuable tool for identifying elements of 
interest within X-ray images. 

2- K-means: Following the extraction of key features from the X-ray images, the next step involved normalization, and 
these normalized features served as input data for the unsupervised learning algorithm known as K-means clustering. The 
objective of K-means clustering is to group data by maximizing the similarity of features within groups and maximizing 
the differences between these groups [22], [23]. In our context, this unsupervised learning method uncovered hidden 
structures within our dataset, and efficiently separated images into two clusters: one containing sharp images and the other 
with images affected by artifacts and unwanted elements. This automated approach emerged as a valuable asset in our 
research, contributing to improve classification performance and, consequently, the precision of medical diagnoses based 
on X-ray images. In our study, k-means was applied to both no finding and pneumonia images, resulting in two clusters for 
each class. The distribution of pneumonia and no finding images in each cluster, obtained through the K-means clustering 
algorithm, is summarized in Table 1. 
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 Pneumonia No finding Total 
Cluster 1: 
Images with artifacts 152 133 285 
Cluster 2: 
Images without artifacts 170 221 391 

Table 1: Number of images of pneumonia and no finding classes in each cluster obtained using k-means clustering. 
 

In the rest of the study, we combined the clusters containing the sharp images without artifacts of pneumonia and no 
finding to have a total of 391 images. These images will be used for classification. Indeed, the elimination of images 
containing artifacts aims to mitigate the impact of noise induced by these images, thereby potentially improving the 
classification model’s performance, which will no longer be disrupted by unwanted elements. 

2.5. Classification 
The DenseNet-121 model was used to perform the classification of normal and pneumonia images. The images were 

resized to 224 × 224 pixels and normalized before being inputted into the pre-trained DenseNet-121 model. During training, 
we initialized the DenseNet-121 with weights pre-trained on ImageNet. The weights of the lower convolutional layers were 
frozen, and we added two dense layers with 1024 and 512 hidden neurons, respectively. This was followed by a dropout 
layer with a rate of 0.5. Finally, the last fully connected layer was replaced with a fully connected layer having a 2-
dimensional output and a sigmoid activation function to classify the image as pneumonia or normal. Training was conducted 
using mini-batches of size 16, and the ADAM optimizer was employed with a learning rate of 10−4. To regularize the network, 
an early stopping strategy was implemented with a patience of five epochs to detect training convergence and prevent 
overfitting. The model was compiled using ’binary_crossentropy’ as the loss function. To increase the size of the dataset and 
improve the model’s generalization ability, data augmentation techniques were applied. Augmentation includes a rotation 
range of 10, horizontal flipping, a width shift range of 0.1, a height shift range of 0.1, a zoom range of 0.1 and setting the 
fill-mode to nearest. 

 

3. RESULTS 
In all our results, we obtained the highest AUC by applying the DenseNet-121 model on the cluster containing the sharp 

images only. With clustering (unsupervised labelling), we achieved an AUC of 79.58% for the DenseNet-121 model applied 
to the cluster without artifacts. To assess our unsupervised labelling approach, we manually labelled pneumonia and no 
finding images as either with or without artifacts, establishing a ground truth for evaluation. Subsequently, we computed the 
confusion matrix for each class, as depicted in Figure 4, and calculated performance metrics presented in Table 2. Also, when 
we applied our model on an additional disease namely consolidation, we achieved the highest AUC of 80.26% using 
clustering (unsupervised labelling) with only the cluster containing images without electronic objects. Table 3 presents the 
results of the binary classification of the two diseases by applying the DenseNet-121 model, with and without the clustering 
step. From Table 4, we can see that our model outperforms the literature for the classification of all the two lung diseases: 
pneumonia and consolidation, using the same dataset. 
 

Fig. 4: The confusion matrix of clustering for: (a) pneumonia class and (b) no finding class. 
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 Pneumonia No finding 

Accuracy 83.54% 82.49% 
Recall 84.62% 86.3% 
Precision 84.12% 85.52% 
F1-score 84.37% 85.91% 

 

Table 2: Clustering performance metrics for the pneumonia and no finding classes. 
 

  DenseNet-121  

Without clustering 
With clustering 

(unsupervised  labelling) 
With clustering 

(manual labelling) 
Pneumonia 77.96% ±1.5% 79.58% ±1.6% 81.47% ±1.8% 

Consolidation 78.52% ±1.4% 80.26% ±1.3% - 

Table 3: AUC of the classification of the two lung diseases with and without the clustering step. 
 

Reference Year Pneumonia Consolidation 
Wang et al. [14] 2017 66.4% 77% 
Rajpurkar et al. [11] 2017 76.8% 74.1% 
Ma et al. [13] 2019 72.2% 75% 
Souid et al. [12] 2021 73.3% 79% 
Yang et al. [24] 2022 73.4% 75.6% 
Jin et al. [25] 2023 73.9% 72.5% 
Our proposed approach 2024 79.58% 80.26% 

 

Table 4: Comparison of the achieved results with other existing methods in the literature for the classification of the 
two lung diseases using the same dataset. 

 

 
4. Discussion 

To address the potential introduction of noise during classification, especially from images with artifacts that lack 
labels in the dataset, we implemented an image preprocessing module. This module was specifically designed to 
distinguish between sharp images and those containing artifacts. In this process, we extracted various contour and texture 
features to serve as input data for the K-means clustering algorithm. The outcome, as outlined in Table 1, resulted in the 
creation of two clusters for each class: one cluster comprises sharp images without artifacts, while the other cluster 
consists of images affected by artifacts. This customized approach enhances the robustness of our classification process 
by effectively handling images with potential noise or artifacts. 

To evaluate our labelling approach, we manually labelled the images of pneumonia and no finding as with and 
without artifacts, creating a reliable ground truth for evaluation. Then, as shown in Figure 4 and Table 2, we computed 
the confusion matrix and the performance metrics for each class, respectively. The clustering of pneumonia achieved an 
accuracy of 83.54% and a F1-score of 84.37%. Similarly, the clustering of no finding achieved an accuracy of 82.49% 
and a F1-score of 85.91%. Examining the confusion matrices (a) and (b) reveals that only 53 and 62 samples out of 322 
and 354 images were misclassified, respectively. Therefore, the clustering (unsupervised labelling) proves to be highly 
accurate in discerning clear images from those containing artifacts. 

Following that, we conducted two experiments using the DenseNet-121 model. In the first experiment, we applied 
the model to all images without clustering. In the second experiment, we applied the model after clustering, specifically 
to the cluster containing sharp images without artifacts, and excluded the cluster containing images with artifacts. The 
AUC was calculated for each case. To guarantee the stability of the results, we conducted ten different random splits of 
the dataset into training, validation, and testing sets. The results are presented in terms of mean and standard deviation. 
As presented in Table 3, without clustering, we obtained an AUC of 77.96% for the classification of pneumonia and no 
finding. With the application of clustering (unsupervised labelling) and utilizing the model exclusively on the cluster 
containing sharp images without artifacts, we achieved an AUC of 79.58% for pneumonia classification. In comparison, 
the DenseNet-121 model applied to the cluster without artifacts obtained through manual labelling attained an AUC of 
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81.47%. The marginal difference between the AUC values of the model with unsupervised labelling and manual labelling 
indicates the high efficiency of our clustering method in distinguishing clear images from those containing artifacts. This 
approach is not only efficient but also requires less time and effort compared to manual labelling by a physician, making it 
applicable to a larger number of images. 

Following this, we generalized our approach for the classification of consolidation and no finding using 2,751 images. 
We used all the consolidation images from the ChestX-ray14 dataset, totalling 1,310 images marked as consolidation. For 
the no finding class, we down-sampled the images to obtain 1,441 samples for classification. Subsequently, we applied 
clustering (unsupervised labelling) using the k-means algorithm on the proposed features extracted from the images. This 
process resulted in two clusters for each class: the first cluster containing sharp images and the second containing images 
with artifacts. As a result, we obtained a total of 1,328 consolidation and no finding images that are clear without artifacts. 
The results, as presented in Table 3, indicate that the classification outcomes with the use of clustering (unsupervised 
labelling) outperform those without clustering. This is confirmed by the AUC values; the DenseNet-121 model applied to all 
images without clustering resulted in an AUC of 78.52%. However, after clustering, the model achieved an improved AUC 
of 80.26%. Therefore, as clearly illustrated from the results in Table 3, applying the model on images that do not contain 
artifacts leads to improve the AUC. Moreover, as indicated in Table 4, our proposed approach demonstrates superior 
performance compared to the literature in the classification of two lung diseases, namely pneumonia and consolidation, using 
the same dataset. 

Therefore, in the diagnosis of lung diseases based on radiographic images, it is essential to account for artifacts. These 
artifacts, stemming from technical issues in X-ray equipment, unwanted interference, or other factors, can significantly im- 
pact the quality of medical images. In a field where precision is critical, these artifacts can distort the interpretation and 
detection of lung anomalies, potentially leading to inaccurate diagnoses and inappropriate treatment decisions. Through the 
implementation of clustering and the prevention of noise introduction through artifacts, our method improves the 
classification performance of deep learning models. By eliminating unwanted noise, these models can focus on relevant 
diagnostic features, thereby enhancing their performance. This results in a more precise detection of lung diseases, with 
potential significant implications for clinical outcomes. In the medical context, this methodology empowers radiologists to 
optimize the detection of abnormalities, contribute to more effective treatment decisions, and, ultimately, elevate the overall 
quality of diagnoses. 

 
5. Conclusion 
This paper focuses on clustering (unsupervised labelling) to separate sharp images from those containing artifacts before 
performing lung disease classification. Features related to contours and texture are extracted from images, and the K- means 
clustering algorithm is used to create two clusters of images based on their extracted features. Then, we performed the 
classification of lung disease exclusively on the cluster containing sharp images without artifacts, using the DenseNet-121 
model. The experimental results showcase the effectiveness of our approach, achieving an AUC of 79.58% and 80.26% for 
pneumonia and consolidation classification, respectively. In contrast, when considering all images with and without artifacts, 
the AUC values drop to 77.96% for pneumonia and 78.52% for consolidation classification. This confirms the vital 
importance of taking into account the presence of artifacts when interpreting radiographic images. It improves model 
performance since it will be able to focus specifically on lung features that are relevant for disease classification, without 
being disturbed by interference related to unwanted objects such as wires or electronic objects. Consequently, it enables 
ensure accurate treatment, minimizes diagnostic errors and guarantee a consistent results interpretation. In the future, it is 
planned to explore other feature extraction techniques to improve artifact identification, and to process images containing 
artifacts to improve the performance of the model for lung disease classification. 
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