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Abstract - The present work proposes a novel approach for automatic detection of patients with mental disorder using EEG 
microstates based on the fundamentals of spectral clustering. This approach involves microstates yielded from Laplacian matrices and 
its feature extraction, like coverage, individual frequency, duration and shifting frequency, followed by machine learning classification. 
Using the EEG signals of the TUH Abnormal corpus, which has data from mental disorder patients and healthy subjects, we achieved 
results that have demonstrated the potential of the technique to efficiently encompass the information present in the EEG and reduce its 
dimensionality , turning it simpler for straightforward classification. The experiments have presented the minimum mean error of 12.50%, 
yet many possibilities for new approaches over the processed data with this technique.  
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1. Introduction 
Early and objective diagnosis for mental disorders may significantly reduce the impairment to the social aspect 

and health of the affected subjects, however, the diagnosis is traditionally based on observations and complaints 
reported by patients or informants, interpreted by specialist [1]. Therefore, the search for neurophysiological 
biomarkers has gained attention in the last four decades [2][3] and several research have demonstrated promising 
broads in mental disorders identification using Machine Learning (ML) and Deep Learning (DL) models, leading 
to prominent biomarkers [1][4][5]. The Electroencephalogram (EEG) signal is one of the most important sources 
of brain dynamical behavior, due to its high time resolution, low cost, and non-invasive nature [1][6], it has aroused 
interest as a neurophysiological biomarker.  

Brain electric fields captured over the scalp using EEG devices can be used to produce potential topographic 
maps, whose shifting configurations reveal dynamic patterns associated with the cognitive process, as explored in 
[2][7]. Later, this way of analyzing EEG signal was related to several cognitive disorders and neurological 
diseases, such as Attention Deficit Hyperactivity Disorder (ADHD) [4], Multiple Sclerosis [8], and Major 
Depressive Disorder (MDD) [9]. These topographic electric potential are ruled by prevalent configurations, 
normally between 4 to 6 potential maps, that usually remains quasi stable for 80 ms to 120 ms before changing to 
another map. These maps are called EEG microstates [7][10]. 

The research carried out in [11] proposed to map these EEG signals to some specific latent spaces grounded 
into the Laplacian matrix spectrum and outputs a high explained variance of the data into a lower dimension space. 
In this work, a strain of this spectral microstate theory is assessed for neurocognitive disorders identification. The 
results are compared to pioneer academic works [3] and well succeeded deep learning applications [12]. 

 
2. Materials 

The Temple University Hospital EEG (TUH EEG) corpus is, to the best of our knowledge, the largest public 
EEG dataset (DS) available [13]. From 2002 to 2017, this DS had been updated and, currently, it has more than 
30,000 records. The TUH Abnormal (TUAB) EEG corpus, a partition of TUH EEG, consists of 2,383 patients and 
2,993 sections (1,595 sections from females), carefully classified by specialists as normal or abnormal. The present 
work uses two balanced TUAB partitions, here on called Evaluation DS and Tuning DS. The first DS is comprised 
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of 280 instances (150 normal) and is the same material used in the evaluation of the reference works [3]; and the 
Tuning DS, which comprises 75 instances classified into two groups: 38 (24 females, age 47.07 + 17.85) EEG 
files from healthy patients and 37 (19 females, age 48.94 + 16.59) EEG files from patients having some kind of 
mental disorder. However, our approach has a previous unsupervised stage, where a partition of healthy instances 
from the Tuning DS was previously used for obtaining prototypes of microstates (as demonstrated in [11]) and for 
training of the classification models.  

All the instances used in this work have an Averaged Reference EEG configuration. This means the reading 
potential of an electrode is referenced to the average of certain group of electrodes measured at A1 and A2, 
according to the Figure 1.a. Besides these features, the complete DS was preprocessed for meeting generality: 21 
channels were kept on every record, as shown in Figure 1.b, and blue dots represent the removed electrodes, FPz 
and Oz.  

 

a.  b.   
Figure 1. AR electrodes configuration: a. TUAB EEG corpus, b. Electrodes selection in this work, adapted from [14]. 
 
In the DS, there are several configurations, including varieties in the number of channels for EEG acquisitions, 

however, the 21 selected channels are often available since the 10-20 system is the most common EGG montage 
[14]. Besides the selection of channels, all the records have been resampled at 250Hz, this also sets a standard for 
the work development and eliminates extra routines specifics for different number of channels and sample rates. 
The public TUH EEG corpus has a previous artifact correction, but the partitions used in this work have been 2-
20Hz filtered [10] for meeting the alfa band signal, the quasi-stable region of the microstates [7]. Together with 
the resampling routine and the band pass filter, all the data treatment was carried out with the aid of the EEG Lab 
Matalb toolbox®. 

 
3. Methods 

 
3.1. The EEG Microstates Theory 

Studies have demonstrated that microstates are easier to determine from EEG signals in the moments of higher 
potential variation, normally as the electric maps change on the scalp, yielding a higher signal-to-noise ratio [15]. 
These moments are flagged by the peaks in the standard deviation among the EEG channels, or the Global Field 
Power (GFP). Therefore, the first step to represent the EEG signal in a microstates series is to compute the GFP, 
where 𝑢𝑢𝑖𝑖 (𝑖𝑖 = 1,2, … 𝑐𝑐) is the signal in the ith electrode, of c EEG electrodes, at time sample t, according to 
Equation 1. 

𝐺𝐺𝐺𝐺𝑃𝑃𝑡𝑡 = �1
𝑐𝑐

 ∑ (𝑢𝑢𝑖𝑖(𝑡𝑡) − ū(𝑡𝑡))²𝑐𝑐
𝑖𝑖=1                                                      (1)                                     



 
 

 
 

 
 

ICBES 148-3 

Once the patterns at GFP peaks are computed, an unsupervised learning algorithm (normally a modified K-
means) is applied to cluster the topographic maps. Four clusters are normally used to represent the EEG signals 
[10], and their centroids are called microstates prototypes. The Global Explained Variance (GEV) is used to state 
how much information a set of microstates prototype encompasses from the EEG signal. Equation 2 presents the 
𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛 for a given prototype, 𝑎𝑎𝑎𝑎𝑘𝑘, 𝑘𝑘𝑖𝑖 ∈  𝐾𝐾 (set of prototypes), 𝑢𝑢𝑛𝑛 is the array of electric potentials, 𝑁𝑁 represents the 
number of time samples in the EEG. This step is important to define the number of microstates that will be used 
to represent the EEG signal as well as the most appropriate ones. 

𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢𝑛𝑛,𝑎𝑎𝑎𝑎𝑛𝑛)2. ( 𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛2/∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛′2𝑁𝑁
𝑛𝑛′ )                                   (2) 

After defining the microstates prototypes, a procedure called backfitting is performed. In this step, every single 
scalp topography of electric potential is assigned to some microstate, so that the result is a microstate series. Figure 
2 presents the process of representing an EEG signal in a microstate series [10]. 

 

 
Figure 2. Illustration of the EEG microstate method: A) 10-sec eyes-closed EEG signal; B) GFP curve of the first 5 s of the EEG 

signal, where the GFP peaks are marked by vertical lines; C) topographic maps at consecutive GFP peaks; and D) microstates prototypes 
obtained after applying a modified k-means. Then, each time point of the EEG signal is represented by one microstate prototype [10]. 
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Figure 3. Classic microstate statistic extraction workflow, adapted from [10] 

 
Given the microstates, it is possible to draw the statistics related to the microstates assignment. Five temporal 

metrics are normally extracted, regarding each microstate: the average duration, frequency of occurrence, 
coverage, global explained variance, and transition probabilities of a given microstate to the others [10]. Figure 3 
presents the classic and yet, commonly used microstate workflow [6][10][15]. 

 
3.2. Fundamentals of Spectral Clustering 

Spectral clustering is an unsupervised learning algorithm based on the spectral graph theory [17]. It assumes 
the basic hypothesis that points in the same groups are similar, and points in different groups have weak similarity. 
Given a set of 𝑛𝑛 patterns (𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑛𝑛), this technique represents the data in the form of similarity graph (𝐺𝐺) of 
vertices (points) and edges (link between vertices), where the weight between two vertices 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 is zero (𝑤𝑤𝑖𝑖𝑖𝑖 =
0) if they are not similar or below some threshold, otherwise, the weight is a positive value 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0, with 𝑤𝑤𝑖𝑖𝑖𝑖 =
𝑤𝑤𝑗𝑗𝑗𝑗. The weighted adjacency matrix of the graph is the matrix W, where each element represents the weight 
between the vertices, defined by Equation 3 as 

 𝑊𝑊 = (𝑤𝑤𝑖𝑖𝑖𝑖)𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛                                                                 (3) 

For the same graph (G), the degree matrix (𝐷𝐷) is defined as a diagonal matrix, with degrees (𝑑𝑑1 …𝑑𝑑𝑛𝑛) on it, 
where the degree of a vertex (𝑥𝑥𝑖𝑖) represents the number of other vertices (𝑥𝑥𝑗𝑗) linked to it, according to Equation 4: 

𝑑𝑑𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1                                                                      (4) 

The vertex degree equation shows the sum only happens over the vertices adjacent to 𝑥𝑥𝑖𝑖, and zero to any other 
vertex. For convenience, we can think in a relaxed problem of zeros and ones (vertices connected or not), and a 
subset of vertices 𝐴𝐴 ⊂  𝑉𝑉 (the group of all the vertices in G), and its complement 𝐴̅𝐴. For better understanding, the 
problem is relaxed instead, therefore the weight between vertices is given by the indicator vector１𝐴𝐴 =
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(𝑓𝑓1,𝑓𝑓2 … 𝑓𝑓𝑛𝑛)′,∈  𝑅𝑅𝑛𝑛, where the entries 𝑓𝑓𝑖𝑖 = 1, if 𝑣𝑣𝑖𝑖  ∈  𝐴𝐴, and 0, for the complements. Finally, the unnormalized 
Laplacian matrix (L) is defined by Equation 5: 

𝐿𝐿 = 𝑊𝑊 −𝐷𝐷                                                                        (5) 
In practice, from a matrix of 𝑛𝑛 patterns 𝑋𝑋𝑐𝑐 × 𝑛𝑛 (raw data), turned into a similarity graph 𝐺𝐺 (by approximation), 

the aforementioned matrices would have the form in Figure 4, according to Equation 5. 

 

 
Figure 4.  Weight matrix (W), adjacency matrix (D) and the Laplacian matrix (L), adapted from [19]  

 
Note that the Laplacian matrix (𝐿𝐿) has the same values of 𝐷𝐷 on the main diagonal, out of the diagonal, 𝐿𝐿 has -

1 if there is a link between nodes of row 𝑖𝑖 and column 𝑗𝑗,  and zero, otherwise. Also, note that the sum of the 
elements in a row or column always is equal to zero, as the constraint of the Laplacian matrix. It has the form of a 
diagonal block matrix, with 𝐿𝐿𝑖𝑖 blocks corresponding to the real clusters in the data. Finally, the trick is to explain 
L by its spectrum since this representation enhances the cluster-properties [17]. This is normally done with the 
application of Singular Value Decomposition (SVD). The optimal number of singular vectors is defined with the 
eigengap heuristic, and this is a very special point in this technique, since it may provide an expressive dimension 
reduction. The last step is the implementation of a clustering algorithm over the remaining singular vectors. 

3.3. Spectral Microstates of EEG 
The use of spectral clustering theory for extracting microstates from EEG signals is a novel approach, 

described by da Rocha Junior in [11], that in [11] generated higher GEV than the traditional microstate method. 
The workflow of this method is presented in Figure 5, where the EEG signals in the instants of GFP peaks are 
arranged into a 𝑋𝑋𝑐𝑐 × 𝑛𝑛  matrix, being c the number of channels and n the number of time samples. 

 Initially, the matrices W and D are extracted from de raw dataset, following the Laplacian matrix and its 
spectrum, also outlined in Section 3.2. Observe that in the spectrum of the Laplacian matrix 𝑆𝑆𝑚𝑚 × 𝑛𝑛, where m < c, 
that is, there is a dimension reduction. Once the data is mapped in this latent space (S), a suitable clustering 
technique needs to be applied to identify the clusters, which are the prototypes itself, 𝐾𝐾 = (𝑘𝑘𝑖𝑖)𝑖𝑖=1,…,𝑙𝑙. We call these 
prototypes of spectral microstates since they are generated on the L matrix spectrum, and normally identify them 
by labels (A, B, C, D…). In this work, the technique chosen was the K-medoids, since it is less sensitive to outliers 
in data, and uses real data as centroids [17]. 
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Figure 5. Spectral prototypes of EEG workflow 

 
To assign to each EEG sample a microstate, the workflow in Figure 5 is run as far as the spectrum (S’) of the 

new EEG instance, then, the previous prototypes shall be backfitted with the data. Figure 6 illustrates this 
procedure: the distance metric between the prototypes (K) and every sample in (S’) is calculate; the samples receive 
the same label of the nearest prototype 𝑘𝑘𝑖𝑖. 

 

 
Figure 6. Labeling new EEG step samples with pairwise and spectral prototypes (K) 

Normally, the same distance metric used in the prototypes development (K) should be used in the pairwise 
algorithm. Since the K and S’ have been designed from Laplacian matrix spectrums with the same metrics, as an 
effect of the new mapped space, the prototypes have high generality levels as compared to the samples in the 
original space [11]. The procedure to assign a microstate to each EEG sample produces a microstates series, and 
from this series, we can compute the same five temporal metrics of the traditional microstate method, as described 
in Section 3.1. The result of mapping EEG signals to a microstates series may vary depending on several 
parameters used in the workflow of Figure 5. The most influential adjustments for the outputs are the metric 
distance or the similarity measure used for the similarity graph and spectral prototypes, type of similarity graph, 
dimensions of S and K, and number of medoids (same as prototypes). The chosen values for these adjustments in 
this paper were cosine, cosine, complete, 3, and 8, respectively. The result of this workflow, after mapping several 
EEG records, are columns with each time sample labeled (microstate) and rows of EEG records, as the example 
presented in Figure 7. 
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Figure 7. EEG records mapped in the latent space of Laplacian matrix (rows) and microstates labeled according to the prototypes 

(columns) 
 

The classic approach for microstate analysis uses statistical features of the labeled series S’, as mentioned in 
Section 3.1. Since the novelty in this work is focused on the preprocessing stage, ordinaries machine learning 
models were applied to distinguish normal from abnormal groups based on the following statistics: the time 
fraction of the signal each microstate is activated (coverage), the frequency of each microstate occurs in the signal 
(individual frequency), the average period a microstate remains active as it occurs (duration), and overall transition 
probability (shifting frequency).  

 
4. Experiments and Results 

To evaluate the presented approach, the healthy instances from the Tuning DS, presented in Section 2, was 
initially used for producing models of microstates (8 prototypes). 10 seconds of each EEG file were drawn and 
read at the GFP peaks, arranged into an 𝑋𝑋𝑐𝑐 × 𝑛𝑛 matrix, where c is the number of channels and n is the number of 
time samples. 

After obtaining the prototypes, the Tuning and the Evaluating DS passed through the workflow presented in 
Section 3.3, they were represented as sequences of microstates (Figure 6), and 25 features were computed for 10 
seconds of each EEG in the Tuning and the Evaluation DS (3 features for each prototype and one for the overall 
probability of transition), the statistics are computed and used for supervised learning. These 75 instances statistics 
from Tuning DS were split in 85/15 for training and tuning classic supervised learning models for classification 
of normal and abnormal EEGs. First, two algorithms (KNN and SVM) were tried with aid of the Bayesian 
Optimization over the Tuning DS, with minimization of the five-fold loss for the likely best parameters. After the 
Bayesian optimization suggestion, the proposed models were evaluated with 30 different random seeds for cross-
validation partition and random initialization, for testing results stability. The third model was a feedforward net, 
its architecture was drawn by the multiple interaction search with variation of the last hidden layer (from 2 to 50 
neurons).  The three models with the least mean error (Equation 6) were used in the test phase for 30 new random 
simulations using the 280 instances of the Evaluation DS. The evaluations were taken according to the mean error: 

ɛ = 𝑁𝑁𝑒𝑒
𝑁𝑁𝑡𝑡

 ×  100%                                                                     (6) 
where 𝑁𝑁𝑒𝑒 is the number of incorrect classification samples and 𝑁𝑁𝑡𝑡 is the total amount of samples in the 

partition. 
Three machine learning algorithms for classification were used in the experiments: 

• K Nearest Neighbors (KNN) – Euclidean distance and 1 neighbor. 
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• Support Vector Machines (SVM) – Order 3, polynomial kernel, boxconstraint 0.041 and kernel scale 
0.640. 

• Artificial Neural Network (ANN) – feedforward net 4/10/41 neurons (tansig/tansig/logsig transfer 
functions). 

Table 1 shows the mean and standard deviation of error after 30 iterations of each algorithm on each phase 
when using the presented methodology. 

 
Table 1. Models error rate (%) and standard deviation (%) on each development phase 

Model Test STD 
KNN 26.07 0.01% 
SVM 24.57 7.54% 
ANN 12.50 19.90% 

 
It was important to apply the KNN and SVM algorithms for comparing with other works [3][5] that used the 

same models and check the specific effect of the preprocessing techniques. The SVM model has excelled KNN 
with a 24.57% error rate, but both systems have exceeded other works. However, the ANN model has presented a 
mean error of 12.50%, which exceeded the other approaches (see Table 2), without the usage of any deep network 
architectures. This baseline results are better than the CNN used in [3], but under the results of the WaveNet-
LSTM application [12]. Despite the variation for the standard deviation, 19.90%, during the interactions for 
searching for the best model, several other architectures have presented prominent results as well.  

The reference works have used a larger training set (2785 instances) from the TUAB corpus, while in this 
work, we have used only 75 instances of the same corpus, however, this research used the same partition for the 
models’ evaluation (280 instances). These facts strengthen the reliability of the spectral microstates approach for 
the task assigned in this work. Table 2 summarizes our results compared to the reference works. 

 
Table 2. Models error rate (%)  comparation 

Study Mean Error Model 

Lopez et al.[3] 21.20% CNN-MLP 

Albaqami et al.[12] 11.24 WaveNet-LSTM 

Our work 12.50 Feedfoward Net 
 

5. Conclusions 
In this work, we presented an approach called spectral EEG microstates and we applied it to the detection of 

patients with mental disorders. Different from the traditional EEG microstates method, the new approach obtains 
the EEG microstates using spectral clustering theory. In our experiments, a neural network obtained a mean error 
of 12.50% using few training instances. This result was similar to those obtained by more complex neural 
networks, which used much more training instances. These observations suggest the efficiency of the spectral 
microstates technique and support future works with larger datasets and the application of deep architecture 
techniques, like neural networks applied directly over the streaming of microstates (Figure 6) and automatic 
extracting of features for classification, aiming for better results and assistance with clinical diagnosis.  
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