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Abstract - Digital holographic microscopy (DHM) is a label-free and high-throughput cellular imaging technology leverages phase 
contrast to reveal subtle intercellular refractive index variations, allowing to the derivation of biophysical parameters related to cell 
function. Neutrophil and monocyte activation, major parts of the innate immune system, can be quantified via fluorescence flow 
cytometry by measuring activation markers, aiding in the diagnosis and assessment of inflammatory diseases. However, workflow 
standardization and quantification with fluorescence flow cytometry remain laborious, challenging, and costly. Automated haematology 
analysers are widely available, solve labour challenges, and provide economical differential leukocyte counts but cannot differentiate or 
assess leukocyte activation. There is an unmet need to provide reliable information on immune cell function at the bedside using point-
of-care diagnostics. DHM potentially meets this need by providing label-free, automated, high-throughput and high-resolution cellular 
imaging capable of monitoring leukocyte activation. Furthermore, integrating deep learning models can be used to accurately recognize 
activated cells, reducing operator variability and automating analysis. We present a novel imaging platform utilizing DHM to identify 
activated leukocytes as an early predictive biomarker for inflammatory states, demonstrating this technology may enable real-time patient 
monitoring in clinical settings, facilitating risk stratification and therapy response monitoring at the bedside. 
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1. Introduction 

The human immune system, a complex network of cells and proteins, is pivotal in protecting the body against 
infections and diseases. Among its components, leukocytes (white blood cells) are crucial for detecting and responding to 
pathogens. The innate immune system, especially monocytes and neutrophils (comprise up to 70% of all leukocytes), are 
essential in mounting effectively early immune responses against pathogens [1]. Activated monocytes differentiate into 
macrophages, which can acquire pro- or anti-inflammatory phenotypes based on stimuli they encounter. Especially classical 
proinflammatory monocytes infiltrate sites of inflammation after the detection of pathogens through specialised receptors 
and shape the inflammatory microenvironment through the release of proinflammatory cytokines [2]. Neutrophils, 
conversely, are infection first responders mediating immediate pathogen elimination and modulation of other immune cells 
[3]. 

Cellular immune activation is routinely traced in transplantation immunology and the monitoring of autoimmune 
diseases, with a focus primarily on the adaptive immune system. These tests have demonstrated potential in diagnosing and 
monitoring diseases characterized by immune dysregulation [4]. For instance, monocyte/macrophage activation tests have 
shown utility in conditions like subclinical atherosclerosis and breast cancer and assessment of neutrophil activation and 
subsequent immune response provide information about pathogen clearance and immune homeostasis. Neutrophils employ 
various mechanisms, including degranulation, phagocytosis, reactive oxygen species (ROS) production, and the release of 
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neutrophil extracellular traps (NETs) and extracellular vesicles (EVs). While essential for combating infections, these 
mechanisms can also lead to tissue damage if not properly regulated [5, 6]. They are also key players in immune regulation 
through the release of chemokines, cytokines and complement factors which are critical for the maturation and differentiation 
of the adaptive immune system through cellular cross talk. Neutrophil activation is usually triggered by the activation of 
Pattern Recognition Receptors (PPRs) on the cell surface, which detect tissue damage and various pathogens. This leads to 
neutrophil recruitment to the site of inflammation through the capillary wall. This is cellular shape change mediated by 
selectins and chemotaxis in multiple chemokine gradients. An important aspect of neutrophil activation features 
degranulation, which involves the recruitment of granules containing oxidative and non-oxidative antimicrobial agents to the 
cell surface membrane. 
 Given the complexity and significance of leukocyte activation in immune response and disease progression, advanced 
imaging techniques are essential for a detailed understanding of these processes. Traditional imaging methods, such as blood 
smear analysis and flow cytometry, have limitations regarding resolution, sample preparation, and time consumption. 
Automated haematology analysers resolve some issues, like time consumption, and are crucial for blood cell counting and 
characterization in clinical practice but are unable to provide detailed leukocyte activation analysis [7]. They primarily focus 
on basic morphology, missing specific activation markers and subtle changes in cell function. Flow cytometry is more 
detailed, but it requires labour-intensive sample preparation and complex labelling, and is therefore costly. 
 Digital holographic microscopy (DHM) has emerged as a novel cellular imaging tool, offering real-time, high 
throughput, and quantitative imaging capabilities without need for labelling. DHM captures the interference patterns of light 
waves passing through samples, revealing detailed cellular structures without staining, thus preserving cells in their native 
state and ensuring more accurate analysis [8]. Integrating deep learning algorithms for pattern recognition with DHM 
enhances its analytical power, allowing rapid image processing and interpretation of complex data and to rapidly identify 
biomarkers indicative of leukocyte activation. 
 This study describes the use of DHM enhanced with deep learning for analysing leukocyte activation, aiming to 
overcome limitations of traditional imaging technologies, and introducing a potential predictive biomarker for clinical 
practice. We showed that complex immune activation patterns can be effectively resolved and recognized using DHM, 
enabling time evolution studies to capture real-time activation dynamics. It is also presented that DHM brings a novel 
activation assay that enables the detection of activated cells and quantification of activation states within the population. We 
further validate our approach of analysing clinical samples from pneumonia and healthy patients, highlighting a clear 
correlation between the activated leukocytes and the severity of the disease. We envision that this novel tool could potentially 
improve diagnostics and personalized medicine through monitoring treatment efficacy, drug screening, and advancing 
research on immune cell behaviour and activation mechanisms. 
 
2. Methods 
 
2.1. Digital Holographic Microscopy 
 This study utilized a differential holographic microscope setup for cellular imaging (Ovizio Imaging Systems, 
Belgium). The microscope comprises a 528 nm Oslon PowerStar SLED (Osram) for partially coherent Koehler illumination 
and is fitted with a 40× objective with a numerical aperture (NA) of 0.55. A low-coherence light source significantly 
minimizes the noise, improving the image quality. When the light passes through the sample in the microfluidic channel 
under the flow, the scattered light is split by a diffraction grating into the reference (diffracted) and object (non-diffracted) 
waves. Afterwards, a wedge tweaks the reference wave to introduce an optical phase shift (Figure 1) [9]. Different from a 
typical Michelson interferometry, the setup uses a more robust and tight optical design, which is immune to environmental 
changes or operator influences and allows potential point-of-care applications in clinical settings. 
 We performed measurements in DHM using deidentified human whole blood samples from patients who provided 
written consent prior to blood draw in the Intensive Care Unit (ICU) and Emergency Department (ED) of the National 
University Hospital (NUH) in Singapore. The protocol was approved by the local Domain Specific Institutional Review 
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Board (DSIRB  2021-00930). The inclusion criteria for the study were: age above 18, body temperature above 38.5 °C, no 
autoimmune disease, no malignant disease, and no HIV infection.  
 We collected 2 ml of citrated peripheral whole blood from each patient who met these criteria and gave informed 
consent. The collected whole blood samples were diluted with the ratio of 1:100 in phosphate-buffered saline (PBS, Sigma 
Aldrich, USA) containing 0.05% polyethylene oxide (4×106 Da, Sigma Aldrich, USA) to ensure that all blood cells are 
viscoelastically focused to a uniform plane without losing any optical cellular information and need for continuous focusing. 
For each sample, we collected 3 sets of 10,000 frames at an acquisition rate of 105 frames per second to obtain sufficient 
event. 
 
2.2. Microfluidics 

The microfluidic chip contains a straight channel with cross-sectional dimensions of 50 µm x 500 µm for imaging 
under DHM. The sheath buffers from top/bottom and left/right are introduced to tightly focus the sample flowing at a uniform 
plane within the field of view of the microscope objective. The flow rates of the sample and top/bottom sheath buffers are 
set to 0.2 µl/s with a left/right sheath buffer of 0.5 µl/s. This flow regime provides an even focusing plane at the order of the 
microscope objective’s depth of field (DOF) of ± 2.3 µm [8], ensuring that relatively minor fluctuations do not affect the 
optical focus and cause any significant cellular information. 

 

 
 

Fig. 1: The overall schematic and workflow of DHM. 
 
2.3. DHM Experiments and Data Analysis 
 
Dataset Preparation 

In this study, two different experimental protocols were followed to develop different deep learning models:                      
i) stimulation of neutrophils to quantify activation stages for time evolution study and ii) stimulation of neutrophils and 
monocytes to develop another model to detect activated leukocytes in clinical samples from healthy control and fever 
patients. For each group, neutrophils and monocytes were isolated using a magnetic cell sorting kit (Miltenyi, USA) to isolate 
“untouched” cells through negative depletion from whole blood of health donors. Additionally, an erythrocyte depletion kit 
was employed to increase the purity of the sorted cells following negative depletion. After isolating the target cells, 
neutrophils were split and treated with 10 µg/ml of Lipopolysaccharides from Pseudomonas aeruginosa (Sigma Aldrich, 
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USA) or with PMA (phorbol 12-myristate-13-acetate) and ionomycin (100 nM) for stimulation.  Cells were incubated in 
RPMI 1640 at 37 °C in a physiological calcium concentration and time evolution measurements were conducted with DHM 
up to 120 min with 15 min intervals to observe the kinetics of morphological changes. Validation measurements were 
performed using a fluorescence imaging flow cytometer (Cytek Amnis ImageStream X Mark II, USA), with staining against 
CD45, CD 69, HLA-DR and CD66B.  
 The data acquisition and hologram reconstruction in DHM were performed using API provided by the manufacturer. 
The phase images containing unstimulated and stimulated cells were carefully annotated to ensure that each bounding box 
accurately encompassed the cell with the corresponding class in YOLO format. The annotation process involved manual 
examination of each frame to identify and label the cells with respective classes. Firstly, a small training set was generated 
to train the YOLOv8x object detection model. Afterwards, this model was used to automate the annotation process [10]. The 
annotator’s hen performed a quality check over annotations and minor corrections to expand the dataset. Therefore, the final 
dataset comprises 18,000 annotated frames for treated and untreated neutrophils and monocytes. Each frame captures the 
unique morphological characteristics of the cells, which is crucial for learning the intricate patterns associated with leukocyte 
activation. Furthermore, each neutrophil covered by bounding boxes was cropped (50-pixel x 50-pixel) to study the effect of 
time evolution and quantification of activation stages. 
 
Self-supervised learning using autoencoder to quantify activation stages of neutrophils over time 
 An autoencoder was trained to extract valuable features from unlabelled data over time. The autoencoder was 
employed to learn a compressed representation of the input phase images of neutrophils. This model was composed of an 
encoder, which reduced the dimensionality of the data by capturing the most significant features, and a decoder, which 
attempted to reconstruct the original input from these features by sampling. Training the autoencoder on phase images of 
unstimulated and stimulated neutrophils without giving any explicit label taught it to capture the essential morphological 
changes associated with different activation stages. 
 After training, the high-dimensional features extracted by the autoencoder were further reduced using Principal 
Component Analysis (PCA), ensuring that the most critical information was retained while eliminating noise. The reduced-
dimensionality features were then clustered using the K-Means clustering algorithm, which categorized the data points into 
three distinct groups: unstimulated, intermediate, and stimulated neutrophils. This approach allowed the model to 
automatically detect and quantify the activation stages of neutrophils over time without the need for extensive manual 
annotation. The model's effectiveness was validated by comparing its classification results with ground truth labels (i.e., time 
points) to quantify the activation stages of neutrophils. 
 
Developing an object detection framework for identifying activated leukocytes in clinical samples 
 An object detection model was trained to analyse clinical samples from healthy and fever patients to quantify activated 
leukocytes. The YOLOv8x object detection framework was chosen for its balance between accuracy and speed, making it 
suitable for real-time analysis. The dataset included phase images of various blood cells, such as erythrocytes, platelets, and 
white blood cells, to ensure the model's robustness in recognizing different cell types. Special attention was given to 
neutrophils and monocytes in their resting and activated states by including stimulated samples in the training set. 
 During training, the network learned to identify and localize leukocytes within the phase images, distinguishing 
between healthy and activated cells. This process involved extensive data augmentation techniques to simulate the variability 
found in clinical samples and enhance the model's generalization capabilities. Various object detection architectures were 
evaluated, with the model demonstrating the highest precision and recall selected for the final application. The chosen model 
was then validated on independent clinical samples, proving its ability to accurately detect activated leukocytes. 
 
Implementation of deep learning frameworks 
 i) The Variational Autoencoder (VAE) model was implemented using Python (v3.10.6) and PyTorch (v2.2.2), trained 
on a system with an i7-12800H CPU, 32 GB RAM, and an NVIDIA RTX 3080 Ti GPU. The VAE featured an encoder with 
four convolutional layers and a decoder mirroring the encoder. Training involved a custom loss function combining binary 
cross-entropy and Kullback-Leibler divergence, optimized with the Adam optimizer and a cosine annealing scheduler. 
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Gradient clipping and L2 regularization were used to enhance training stability and prevent overfitting. A grid search was 
conducted to optimize hyperparameters, resulting in the best model configuration based on the lowest validation loss. 
 ii) Object detection models were trained using Ultralytics (v8.2.26) on the same system. Hyperparameter tuning 
through grid search focused on the learning rate, batch size, dropout rate, and optimizer configuration, with the batch size 
consistently set to 16. Training employed the Adam optimizer with an initial learning rate of 0.01 and a decaying learning 
rate strategy. A dropout rate of 0.1 was used to prevent overfitting.  
 

Table 1: Validation Results of Different Object Detection Models 
 Precision Recall mAP50 mAP95 
RT-DETR 86.7% 94.4% 87.4% 71.3% 
YOLOv9e 93.4% 94.3% 95.2% 91.1% 
YOLOv8x 94.8% 97.9% 95.2% 91.8% 

  
3. Results and Discussion 

This manuscript evaluated the application of digital holographic microscopy (DHM) coupled with deep learning 
algorithms for the analysis of leukocyte activation. Our results demonstrate that DHM can effectively capture high-
resolution, label-free images of leukocytes, providing detailed insights into their morphological changes upon activation. 
The integration of deep learning models facilitated the precise recognition of activated cells, significantly enhancing the 
analytical capabilities of DHM. The platform successfully detected morphological changes in neutrophils stimulated with 
lipopolysaccharide (LPS). Using an autoencoder, we extracted the most discriminative features unsupervised without 
explicitly training the model with labels. This autoencoder-based model was tested on time-evolution data, clustering cell 
populations into three groups: unstimulated, intermediate, and stimulated, without predefined boundary conditions. The 
model effectively categorized each sample into its respective group, as depicted in Figure 3A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Time evolution of neutrophil activation: a) morphological changes over time between unstimulated and stimulated (10 µg/ml 
LPS) neutrophils captured using DHM and b) Unstimulated (above) and stimulated (below) neutrophils. The cell membrane rupture and 
leaky nucleus following stimulation were confirmed using fluorescence imaging flow cytometer. Green: DNA dye and purple: CD66b. 
Scale bar: 10 µm. 
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Initially, the unstimulated group is well above 80%, with a small group of unavoidable and inherent activated 
neutrophils present in the sample due to donor, isolation protocol or sample handling. The intermediate stage exhibited 
overlap with the stimulated and unstimulated groups, which is expected due to the subtle transition features between these 
stages (Figure 3A). Therefore, we defined an intermediate stage for these ambiguous transitional features. The overlapping 
samples between groups can be attributed to minor morphological changes. The stages were proposed based on DHM data 
and the clustering results from the trained autoencoder. However, these stages align with the kinetics described in the 
literature, where upon NETosis activation, neutrophils undergo chromatin expansion within the nucleus, rupture of the 
nuclear membrane, and leakage into the cytoplasm, typically taking around 100 minutes. Subsequently, NETs rupture the 
cell membrane and spread (>100 minutes) [11]. 

This process is highlighted by the spike observed at the 105-minute time (Figure 3B), where leaky and spiky edges 
become more pronounced (Figure 2A). Although nuclear membrane changes are not directly visible in phase images, our 
model could recognize intracellular changes and classify most structures as the intermediate stage until significant changes 
occur on the cell membrane. Concurrently, the unstimulated cell population sharply decreased to below 20%, as expected. 
The intermediate stage population increased, reaching a plateau at around 60 minutes before decreasing as more neutrophils 
became activated after around 100 min, indicated by increasing population percentages. Note that our workflow allows us to 
screen cells under flow at high throughput, in contrast to studies performed by fluorescence or confocal imaging with attached 
cells. Therefore, cell morphologies observed in DHM do not necessarily follow the same morphological pattern described 
before; in fact, this scheme enables us to determine and cluster the activation stages of neutrophils in a real-time and label-
free fashion. 

 

     
Fig. 3: Quantifying the unstimulated, intermediate, and stimulated neutrophils over time using self-supervised learning.  a) Clustered cell 
populations after extracting self-supervised features and b) prediction of time points of each sample over incubation time. 
 
 We analysed blood samples from healthy controls and fever patients to validate our approach. We developed a deep 
learning framework trained using data from erythrocytes, platelets, and unstimulated and stimulated neutrophils and 
monocytes. Given that our model could effectively recognize leukocyte activation patterns, as demonstrated in Figure 2A, 
we did not need to train the model with every leukocyte subtype. Instead, the model learned the common features inherent 
to different leukocyte classes and their activation morphologies (Figure 4A). The effect of leukocyte type and size on the 
model’s performance and clinical outcomes is reserved for future studies.  
 Subsequently, we analysed clinical samples after performing a comparative study between various object detection 
models trained on the same dataset (Table 1). These samples were obtained from healthy controls and fever patients, 
comprising four groups. The results revealed a significant increase and a broader distribution in the number of activated 
leukocytes detected in fever patients compared to healthy individuals (p<0.1). Specifically, the average percentage of 
activated leukocytes in healthy controls was approximately 5.41%, whereas it was 32.38% in fever patients (Figure 4B). 
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 Notably, the distribution of activated cells among fever patients was quite variable, ranging from as high as 62% to as 
low as 11%. In contrast, the distribution in healthy controls was much narrower. This variability in fever patients underscores 
the heterogeneity of immune responses during fever and suggests that while some patients exhibit a pronounced leukocyte 
activation, others may have a more restrained response. These findings validate our model's effectiveness in detecting 
activated leukocytes and highlight its potential utility in clinical settings for monitoring immune responses. The ability to 
differentiate between healthy and fever states based on leukocyte activation patterns could be instrumental in early diagnosis 
and treatment monitoring of inflammatory conditions. However, we still need to validate and generalize our findings with a 
larger cohort of patients. Expanding the sample size will help ensure the robustness of our model and its applicability across 
diverse patient populations. This will also provide a deeper understanding of the variability in immune responses among 
different individuals, further refining our approach's diagnostic and prognostic capabilities. 

 

          
Fig. 4: Detecting activated leukocytes in clinical samples from healthy control and fever patient samples. a) detected cells by object 
detection model, activated leukocyte (red), erythrocytes (green), indicated with bounding boxes, b) the quantified comparison of activated 
leukocyte percentages between healthy control and fever patient samples, p-value<0.1. Scale bar: 10 µm. 
 
5. Conclusion 
 The present study demonstrates the efficacy of digital holographic microscopy (DHM) integrated with deep learning 
algorithms in analysing leukocyte activation. DHM's ability to capture high-resolution, label-free images of leukocytes, 
coupled with the deep learning model’s precision in recognizing activated cells, offers a significant advancement in the 
analytical capabilities of cellular imaging technologies. Using an autoencoder, we extracted the most discriminative features 
of neutrophil activation in an unsupervised manner. This approach allowed the model to categorize leukocyte activation 
stages: unstimulated, intermediate, and stimulated based on morphological changes without predefined labels. Clustering 
cell populations into these distinct groups align with known biological processes such as NETosis, where neutrophils undergo 
chromatin expansion, nuclear membrane rupture, and eventual cell membrane breakdown. 
 The successful categorization and clustering of activation stages were validated through the analysis of clinical 
samples from both healthy controls and fever patients. The model demonstrated a significant increase in activated leukocytes 
among fever patients, with an average of 32.38% activation compared to 5.41% in healthy controls. This disparity 
underscores the model's ability to discern subtle variations in immune response, crucial for early diagnosis and treatment 
monitoring of inflammatory conditions. Although the differential blood count values were within the normal range, our 
system detected a significant increase in activated leukocytes. This implies that modern haematology analysers are 
insufficient of differentiating this potentially clinically useful parameter. 
 Importantly, the study highlighted the variability in immune responses among fever patients. This variability suggests 
that individual patients’ cellular response is a possible target for a more personalised treatment based on the relative activation 
score of the innate immune system. For instance, the potential clinical outcome of developing a leukocyte activation assay 
could have significant implications for understanding monocyte activation in viral infections such as COVID-19 [12]. Point 
of care assessment of activation level of the innate immune system makes it possible to monitor disease severity early and 
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the risk of potentially lethal complications which currently suffers from the inability of clinicians to separate patients with 
immunosuppression or a hype hyperreagible immune system. 
 Our findings validate the potential of DHM combined with deep learning as a powerful tool for real-time, label-free 
monitoring of leukocyte activation. This technology could enable timely interventions and more accurate monitoring of 
disease progression and treatment efficacy. However, further validation with larger cohorts is necessary to fully realize this 
approach's potential. Expanding the sample size will enhance the robustness of our model and its applicability across diverse 
patient populations. Future studies should aim to include a broader array of clinical conditions to establish the generalizability 
of our findings. Additionally, exploring the composition of the training set comprised of different leukocyte subtypes on 
model performance will provide deeper insights into the nuances of immune response monitoring. 
 In conclusion, integrating DHM with deep learning algorithms represents a promising advancement in cellular imaging 
and immune response analysis. This approach can revolutionize diagnostic and therapeutic strategies for a wide range of 
inflammatory and immune-related conditions by providing detailed, real-time insights into leukocyte activation. Moreover, 
the unmet need for an activation assay to evaluate patient risk in acute care settings, particularly in conditions like COVID-
19, highlights the significance of our findings in identifying early predictive biomarkers for immune cell activation. 
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