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Abstract - The Mixture-of-Experts (MoE) is a widely known deep neural architecture where an ensemble of specialized sub-models (a 
group of experts) optimizes the overall performance with a constant computational cost. Especially with the rise of Mixture-of-Experts 
with Mixtral-8x7B Transformers, MoE architectures have gained popularity in Large Language Modeling (LLM) and Computer Vision. 
In this paper, we propose the Efficient Parallel Transformers of Mixture-of-Experts (EPT-MoE) coupled with Spatial Feed Forward 
Neural Networks (SFFN) to enhance the ability of parallel Transformer models with Mixture-of-Experts layers for graph learning of 3D 
skeleton-data hand gesture recognition. Nowadays, 3D hand gesture recognition is an attractive field of research in human-computer 
interaction, VR/AR and pattern recognition. For this purpose, our proposed EPT-MoE model decouples the spatial and temporal graph 
learning of 3D hand gestures by integrating mixture-of-experts layers into parallel Transformer models. The main idea is to combine the 
powerful layers of mixture-of-experts that process the initial spatial features of intra-frame interactions to extract powerful features from 
different hand joints, and then, to recognize 3D hand gestures within the parallel Transformer encoders with layers of Mixture-of-Experts. 
Finally, we conduct extensive experiments on benchmarks of the SHREC’17 Track dataset in order to evaluate the performance of EPT-
MoE model variations. EPT-MoE greatly improves the overall performance, the training stability and reduces the computational cost. 
The experimental results show the efficiency of several variants of the proposed model (EPT-MoE), which achieves or outperforms the 
state-of-the-art.  
 
Keywords: Mixture-of-Experts (MoE), Parallel Transformers, Hand Gesture Recognition, 3D Skeleton Data, Human-
Machine Interaction 
 
1. Introduction 

Nowadays, the innovative use of a technique called the “Sparse Mixture-of-Experts” model in Mixtral-8x7B 
Transformer introduced by Mistral AI [1] have gained popularity in Large Language Modelling (LLM). Sparsely-gated 
Mixture-of-Experts networks (MoEs) have demonstrated excellent scalability in Large Language Models as Switch 
Transformer [2], GShared [3] and GLaM [4], in Graph learning [5] and in Computer Vision [6]. A Sparse Mixture-of-Experts 
(SMoE) language model named Mixtral 8x7B was introduced by Mistral AI in [1]. Mixtral transformer has the same 
architecture as Mistral 7B [7], with the difference that each Feed-Forward Neural Network (FFN) layer is composed of eight 
FFN blocks (which we call Experts) and two experts are used for each Token of the sequence. Mixtral was based on a 
transformer architecture [8] by using the same modifications as described in [7], with the notable exception that the FFN 
blocks are replaced by Mixture-of-Expert layers in Mixtral. Mixture-of-Experts is an ensemble of FFN that combines 
multiple specialized models called "Experts" to make predictions on different subsets of data in a specific domain. The 
Mistral AI's Mixtral 8x7B model essentially involves training multiple smaller “expert” models, each specializing in specific 
tasks or domains. When confronted with a specific problem (Prompt-Question) of domain, the MoE model selects a group 
of experts best suited to handle the particular challenge. This collaborative model of multiple experts allows Mixtral to 
achieve remarkable accuracy and efficiency, even with a smaller parameter size, and outperforms OpenAI's GPT-3.5. 

Motivated by the huge success of Mixtral transformer developed by Mistral AI [1], we propose the Efficient Parallel 
Transformers of Mixture-of-Experts (EPT-MoE) deep learning architecture to study the ability of parallel Transformer 
models with layers of Mixture-of-Experts (MoE) for graph learning of 3D Hand Gestures Recognition task. A Parallel 
Transformers of Mixture-of-Experts (EPT-MoE) refers to a configuration where two or more Transformers with MoE layers 
are connected in parallel to each other (using ADD operation or Residual skip-connection). Using multiple configurations of 
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parallel Transformers with MoE layers increases the overall performance capacity, improve reliability, optimize the overall 
performance with a constant computational cost, and provide redundancy in parallel Transformers of Mixture-of-Experts. In 
our proposed model named EPT-MoE, each transformer model with MoE layers as a group of expert can specialize in 
recognizing specific types or aspects, a particular part of hand gestures, allowing them to capture subtle patterns and details. 
Combining parallel multiple specialized Transformer models with MoE layers provides more robustness, efficient and 
accuracy in capturing various gestures present in different types/aspects. 

The main application of EPT-MoE in this paper is skeleton-based 3D hand gesture recognition [9–12] which has been 
an active research topic of computer vision due to its wide range of applications such as human-computer/-robot/-machine 
interaction, VR/AR and Robotics. It offers many opportunities in different contexts such as industry 5.0 and health-care. 
Low-cost depth sensors such as Microsoft Kinect and Intel RealSense captured dynamic hand skeleton data (with RGB 
images and RGB-D data) with high precision. These data are coupled with quick advances in action recognition [13, 14] and 
hand pose estimation research [15] that allows easily obtaining accurate time-series coordinates of hand joints. Skeleton-
based methods, that presented by a sequence of hand joints with 2D or 3D coordinates, are more robust to varying lighting 
conditions and occlusions given the accurate joint coordinates. Recently, efficient graph learning representation of hand 
skeleton-data in STr-GCN work [11] coupled with multi-head-attention mechanism in transformer encoder model has 
demonstrated its capacity to extract powerful spatial-temporal information. In the skeleton-based action recognition [14, 16–
18], using graph learning by Spatial-Temporal Graph Convolutional Neural Networks (GCNs) leads to the most successful 
ST-GCN work [14]. These networks exploits joint connections using graph convolutions in both spatial and temporal 
domains. Graph Convolutional Skeleton Transformer (GCST) based on GCNs and Transformer was introduced in [19] for 
human action recognition. Moreover, the concept of Mixture-of-Experts (MoE) to GNNs was introduced in [5] by proposing 
Graph Mixture-of-Experts (GMoE) model that empowers individual nodes in the graph to dynamically and adaptively select 
more powerful spatial-temporal information aggregation experts. 

In summary, our contributions in this work are as follows: first, we introduce the Efficient Parallel Transformers of 
Mixture-of-Experts (EPT-MoE) architecture that consists of multiple parallel Transformers with multiple MoE layers. 
Coupling EPT-MoE with Spatial Feed Forward Neural Networks (SFFN) is so useful to extract spatial and temporal 
correlations between 3D-skeleton sequences, pairs of nodes, taking advantage of the hand graph structure. Then, we present 
different configurations (several variants) of EPT-MoE for 3D-skeleton sequences processing and theirs influences on the 
recognition performance, training time, model size, GPU model performance usage and inference. We present the most 
important achieved and competitive results on main skeleton-based hand gesture benchmarks based on SHREC’17 Track 
dataset [15] for validation and testing. Parallel Transformers coupled with Mixture-of-Experts has shown the effectiveness 
of our EPT-MoE architecture for 3D hand gesture recognition. The rest of this paper is structured as follows: In Section 2, 
related works on Mixture-of-Experts model, Transformer architecture, and Graph Convolutional Neural Networks (GCNs) 
for 3D hand gesture and action recognition approaches are reviewed. In Section 3, we describe in details our proposed EPT-
MoE architecture. In Section 4, we report our experimental results including performance evaluations for 17 several variants 
of EPT-MoE architecture. We conduct a discussion and a conclusion in Section 5. 

 
2. Related Works  

In this work, we focus on the traditional architecture of Transformers based upon Self-Attention/Multi-Head-
Attention [9, 11, 16, 18, 20, 21] and the concept of Mixture-of-Experts transformer as Mistral AI [1], Switch Transformer 
[2], GShared [3] and GLaM [4]. Then, we introduce the concept of Parallel Transformer with Mixture-of-Experts layers 
for skeleton-based 3D hand gesture recognition. Skeleton-based 3D hand gesture recognition is an active research topic 
due to its wide range of applications such as human-computer interaction, robotics and VR/AR. With the rise of deep 
learning, it has been studied in recent years in many advanced skeleton-based methods [9–11, 13–18, 20–22]. In this 
work, we focus on recent hand gesture and action recognition related works that are based on Graph Convolutional 
Networks (GCNs) [14, 17]. 
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2.1. Transformers and Mixture-of-Experts (MoE) Models 
 The concept of Mixture-of-Experts (MoE) model has been studied in the Deep and Machine Learning (DL/ML) 

community [2, 6, 23, 24]. Nowadays, spurred by advancements in Large Language Models (LLMs) [1–4], sparse MoE has 
has re-gained prominence with the arrival of Chat/Mixtral/Mistral 7B transformers of Mistral AI [1, 7] as Large Language 
Language Models. The new trend is to scale these LLMs models to have much greater performance with more or less stable 
stable costs. Turns out that the performance of an LLM positively correlates with the model size and scalability. The 
remarkable success of sparse MoE in the realm of LLMs has spurred its adoption in diverse domains, including vision, multi-
modal, and multi-task learning [1, 7]. The MoE main idea is explained by replacing the original FFN layer with  a group of 
MoE layer in the standard Transformer architecture [8]. FFN layers plays a crucial role, typical following the multi-head-
attention and normalization layers. Generally, MoE layer consists of a set of an ensemble of specialized models called 
“Expert Networks" to make predictions on different domains. Each expert network can be a simple FFN layer (i.e. Experts) 
as proposed in Mixtral transformers [1, 7] with a router to select the Expert Network for a specific domain. In [3], GSHard 
model [3] is an illustration of scaling of Transformer Encoder with MoE Layers. The MoE layer replaces the every other 
Transformer FFN layer. The encoder of a standard Transformer model is a stack of self-attention and FFN layers interleaved 
with residual connections and layer normalization. By replacing every other FFN layer with a MoE layer, they get the GSHard 
model structure of the MoE Transformer Encoder. As similar to GSHard, authors in [4], they proposed GLaM (Generalist 
Language Model) which uses a sparsely activated MoE architecture to scale the model capacity. In the same context, Vision 
MoE (V-MoE) [6] is a sparse version of the Vision Transformer scalable with the largest dense networks applied to image 
recognition on ImageNet. 

In this paper, we propose the Efficient Parallel Transformer with MoE layers for 3D hand gestures recognition. For this 
purpose, we interest to explore and study the integration of parallel Transformer with MoE layers of Mixtral transformers 
into Parallel Transformer Encoders with MoE, Graph Convolutional Neural Networks and Spatial FFN. In the next section, 
we present EPT-MoE architecture that extracts spatial and temporal correlations between 3D-skeleton sequences, pairs of 
nodes, taking advantage of the hand graph structure. We inspired our proposed EPT-MoE from Mixtral of experts [1, 7] and 
the main application from STr-GCN work [11].  

 
3. Efficient Parallel Transformers with Mixture-of-Experts (EPT-MoE) 

In this section, we present the Efficient Parallel Transformers with Mixture-of-Experts (EPT-MoE) architecture that take 
advantages of multiple parallel Transformer Encoder coupled with MoE models for capturing spatial temporal features in 
sequences of 3D hand skeletons. Fig. 1 describes the concept of Parallel Transformer with Mixture-of-Experts layers 
compared with Standard Transformer [8], GShard [3], and Mixtral [1]. The EPT-MoE architecture consists of multiple 
parallel Transformer encoders stacked in parallel configuration, each Transformer encoder’s output is connected by ADD 
operation to all encoder’s output or to the residual stream. In Fig1.a, the encoder of a standard Transformer model [8] is a 
stack of self-attention (Multi-Head Self Attentions) and Feed Forward Neural layer (FFN) interleaved with residual 
connections and layer normalization. In Fig1.b, the MoE layer in Mixtral transformers [1, 7], GSHard model [3] replaces the 
every other Transformer feed-forward layer (FFN). They get the model structure of the MoE Transformer Encoder. In Fig1.c, 
the proposed model (EPT-MoE) consists of P parallel Transformer encoders with MoE layers. EPT-MoE refers to a 
configuration where two or more Transformers (P parallel Transformers) with MoE layers are connected in parallel to each 
other (using ADD operation or Residual skip-connection). First, we apply MoE layer on an input sequence to extract initial 
features by activation two or more experts (TopK= 2, 3, etc.) of the total number of experts (M) in MoE layer. Then, these 
features are passed via linear layers to be processed by P parallel Transformers with the Multi-head Attention and MoE 
layers. Each MoE layer (i.e. MoE layer 1, the bottom block) is interleaved with Transformer block (the upper block). For 
each input of p parallel Transformer encoder (I), we have an output of the Encoder p, which connect to ADD operation. This 
ADD operation takes the sum of the all outputs of the P parallel Transformer encoders. The ADD output is assigned to K of 
the M experts by a router of the MoE layers. The MoE layer’s output is the weighted sum of the outputs of the K selected 
experts. In EPT-MoE, an expert is an adapted non-linear FFN block with GELU (Gaussian Error Linear Unit) activation 
function [25, 26] as similar to SwiGLU activation function in Mixtral [1] and a vanilla transformer architecture. The final 
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linear layer is considered as FFN classifier, which interprets the final output of the MoE layer. When scaling to multiple 
devices, the P parallel Transformer encoders with MoE layers is shared across multiple GPU-devices. We note the 
of Parallel Transformer encoder (P), the number of layers in the P Transformer encoder (LP) and the total number of 
layer experts in P Transformer encoder (P).   

 
Fig.1. Illustration of the concept of the Efficient Parallel Transformers with Mixture-of-Experts (EPT-MoE) Architecture. (a) The 

Encoder of a standard Transformer model [8], (b) The MoE layer in transformers [1, 7], (c) Our proposed model (EPT-MoE) consists 
of P parallel Transformer encoders with P MoE layers. EPT-MoE refers to a configuration where two or more Transformers (P parallel 

Transformers) with MoE layers are connected in parallel to each other. 
 

Fig. 2 describes in details the different parts of our proposed EPT-MoE architecture for 3D skeleton-based hand 
gesture recognition. EPT-MoE architecture is extended with a one simple layer of GCN to extract spatial information 
from graphs and one block of Spatial Feed Forward Neural Networks (SFFN), which consists of three layers 
respectively: Linear layer, MoE layer [1], Linear layer. First, we apply a simple layer of GCN on a sequence Xin (from 
t1, t2, …, ti, …tn) ∈ RCin×T×N of 3D hand skeletons to extract initial spatial features, where each vector Xint =
{x1t , x2t , … , xnt } represents the 3D coordinates of hand joints at a time stamp t, with T is the sequence length of skeleton 
sequences for N hand joints. N is the number of nodes. Then, GCN output XS is connected to the Spatial Feed Forward 
Neural Networks (SFFN) (see Fig.2). We apply a SFFN on the GCN output XS to select spatial features using two linear 
layers and one MoE layer by dispatching of inputs to the selected experts of MoE layer. An expert is an adapted non-
linear FFN block with GELU activation function. SFFN output XPis connect to the inputs of the P parallel Transformer 
encoders to extract spatial-temporal features with the Multi-head Attention of the Transformer block, and MoE layers. 
Each MoE layer is interleaved with Transformer block. For each input of Transformer block in the XP sequence (SFFN 
output), we have an output Yp which is connected to the Router Rp of the MoE layer. The Router module Rp plays the 
Gating Network module which dynamically selects K (two, or more) the most relevant experts out of M experts (4, 8, 
etc.), which is represented by experts from “Expert_1 (FFN1)” to “Expert_M (FFNM)” in the MoE layer. Then, the 
weighted average of the outputs from these K experts (one, two, or more) will be connected to the next layer. K (two, 
three or more) different experts are selected for the next input in the XP sequence. Each input in the XP sequence gives 
an output Yp which is connected to the Router Rp of the MoE layer to be assigned to K of the M experts by the Router 
Rp. The MoE layer’s output Up is the weighted sum of the outputs of the K selected experts. In EPT-MoE, for each 
Transformer encoder, we add the MoE layer’s output Up of the P Parallel Transformer encoders OP = ∑ Up

p=P
p=1 . This 

output is passed to a new MoE layer for a new selection of the final decision. The final linear layer (used as FFN 
classifier) interprets the output Z of the MoE layer. 

(a) (b) (c) 
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Fig.2. Architecture of the Efficient Parallel Transformers with Mixture-of-Experts (EPT-MoE) for 3D Hand Gesture Recognition. 
 

To scale Transformer models for 3D hand gesture recognition, we introduce parallel transformer encoders with MoE 
layers by replicating the number of Transformer and replacing each Feed Forward Neural Network (FFN) in Transformer 
encoder with a sparse mixture of independent FFNs (which we call experts). A learnable router layer selects which experts 
are chosen (and how they are weighted) for every individual 3D skeleton-data of gesture’s sequences. That means different 
sequences from the same 3D skeleton-data of gesture’s sequences may be routed to different experts into different parallel 
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transformer encoders. Each individual 3D skeleton-data of gesture’s sequences is only routed to at most K (typically 1, 
2, or more than 2) experts, among a total of M experts (in our experiments, M is typically 8 or 16). This allows scaling 
the model’s size while keeping its computation per gesture’s sequences roughly constant. 

The principal contribution is introducing the Efficient Parallel Transformer Encoders with Mixture-of-Experts 
layers into a new Mixture-of-Experts Transformer architecture, which extracts spatial and temporal correlations between 
3D-skeleton sequences of the hand graph. The main differences between our EPT-MoE architecture (see Fig.2) and STr-
GCN [11] are summarized by:  
(1) The main idea is introducing the concept of parallel transformer encoders with Mixture-of-Experts (MoE) layers; 
(2) Using multiple parallel transformer encoders, then varying the number of transformer layers (from 6 to 4, 1 layers) and 

the number of MoE layers in transformer encoders; 
(3) Replacing the number of convolutions in GCN by introducing a new spatial linear and MoE layers;  
(4) Integrating a MoE layer to the final FFN classifier.  

In the context of our work, basic graph convolution neural network [11, 14, 16, 22] and standard Transformer [8], 
Mixture-of-Experts (MoE) model [1, 2, 4, 7, 27] are summarized into our proposed EPT-MoE architecture. 

 
3.1. Transformer Block of EPT-MoE 

Transformer block of the p Parallel Transformer encoder in the proposed model EPT-MoE (see Fig.1 and Fig.2) is 
inspired from Transformer block [8] where each block has two sublayers: a Multi-Head Self-Attention layer (MHSA) 
and a fully connected Feed-Forward Neural network layer (FFN). We use one MHSA layer with two-dimensional 
convolution operations as in STr-GCN [11] to process the input 3D skeleton sequences and their spatial relations by a 
simple projection into three independent matrices of the joints spatial feature vectors: 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 ∶  𝑄𝑄𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝐷𝐷𝑞𝑞  ;  𝐾𝐾𝑄𝑄𝐾𝐾𝑄𝑄 ∶
 𝐾𝐾𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝐷𝐷𝑘𝑘  ;  𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑎𝑎𝑉𝑉𝑄𝑄𝑄𝑄𝑄𝑄 ∶ 𝑉𝑉𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝐷𝐷𝑣𝑣. Respectively: 𝐷𝐷𝑞𝑞, 𝐷𝐷𝑘𝑘, and 𝐷𝐷𝑣𝑣 denote the dimensions of queries, keys and 
values. 

In EPT-MoE Transformer, we set the 𝐷𝐷𝑞𝑞, 𝐷𝐷𝑘𝑘, and 𝐷𝐷𝑣𝑣 the dimensions of queries, keys and values to the feature size 
32 as similar as in [10, 11]. Each operation of queries, keys and values is a two-dimension Convolution (Conv2D with 
kernel size set to 1 with stride set to 1, the input model dimension set to128, and 𝐷𝐷𝑞𝑞, 𝐷𝐷𝑘𝑘, and 𝐷𝐷𝑣𝑣 set to 32). The self-
attention is computed between each joint at time stamp t, and its corresponding joint in all frames by the scaled dot-
product self-attention denoted and used by Transformer as follows [8], [11]: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑄𝑄𝑎𝑎𝐴𝐴𝑄𝑄𝐴𝐴𝑎𝑎𝑖𝑖 =  𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑖𝑖(𝑋𝑋𝑃𝑃 ) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑎𝑎𝑆𝑆 �𝑄𝑄𝑖𝑖𝐾𝐾𝑖𝑖
𝑇𝑇

�𝐷𝐷𝑘𝑘
�𝑉𝑉𝑖𝑖                                                     (1) 

The operation in Eq. (1) is used to calculate locally spatial-temporal features between the joints. The MHSA 
mechanism projects the D-dimensional representation (𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∶ the dimension of model, is the number of features in a 
sequence 𝑋𝑋𝑃𝑃) into multiple subspaces with H different sets of learned projections (H: the number of heads).  For each 
of the projected queries, keys and values, single attention head is computed according to Eq. (1). All attention heads 
(MHSA) are concatenated and projected back to D-dimensional representation, which can be formalized as: 

 
𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉,𝑋𝑋𝑃𝑃 ) = 𝐶𝐶𝐴𝐴𝑎𝑎𝐶𝐶𝑎𝑎𝐴𝐴(𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎1; ∶;𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑖𝑖; : ;𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐻𝐻−1;𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐻𝐻)𝑊𝑊𝑚𝑚              (2) 

 
𝑊𝑊ℎ𝑄𝑄𝑄𝑄𝑄𝑄 𝑊𝑊𝑚𝑚is a linear projection from D-dimensional representation (dimension model) and to a 256-dimension 

feature space (hidden dimension) [8, 10, 11]. 
The main role of MHSA should allow each head to extract different spatial-temporal features from the graph 

sequence. In EPT-MoE Transformer (see Fig.1 and Fig.2), we employ the number of heads H=8 parallel attention heads. 
For each of these, we use 𝐷𝐷𝑞𝑞, 𝐷𝐷𝑘𝑘, and 𝐷𝐷𝑣𝑣 = 32. We fix the model dimension to 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 128 . Meanwhile, we vary 
the number of encoder layers (L) in the EPT-MoE transformer encoder. Due to the reduced dimension of each head, the 
total computational cost is similar to that of single-head attention with full dimensionality. The final output of the 
Transformer block can be formulated as: 
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𝑌𝑌𝑝𝑝 =  𝐿𝐿𝑎𝑎𝐾𝐾𝑄𝑄𝑄𝑄𝐿𝐿𝐴𝐴𝑄𝑄𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑋𝑋𝑃𝑃) + 𝑋𝑋𝑃𝑃)                                                      (3) 
 
Where 𝑋𝑋𝑃𝑃 is the SFFN output (seen as a sequence), which connected to the input of the first self-attention layer of 

MHSA. We note 𝑌𝑌𝑝𝑝 the output of the normalization layer of the Transformer block in Parallel Transformer encoder p. 
By the next, we present Mixture-of-Experts (MoE) layers in the p Parallel Transformer encoder. The output Ypof the 

the normalization layer of the Transformer block is connected directly to the input MoE layer. In our work, we interest to 
explore and study the integration of MoE layers of Mixtral transformer [1, 7] into EPT-MoE Transformer Encoder. 

 
3.2. MoE Layer of EPT-MoE 

The structure of Mixture-of-Experts (MoE) layer of the p Parallel Transformer encoder in the proposed model EPT-
MoE (see Fig.1 and Fig.2) consists of a given set of M expert networks 𝐸𝐸 = {𝐸𝐸1, … ,𝐸𝐸𝑚𝑚 … ,𝐸𝐸𝑀𝑀}, and a Router 𝑅𝑅𝑝𝑝 of the MoE 
layer. This is similar to that used in Mixtral Transformer [1] (or called Gating network G similar to Switch Transformer [2] 
and GShard [3]) whose output is a sparse M-dimensional vector. The Router module 𝑅𝑅𝑝𝑝 play the Gating Network module 
which dynamically selects K (two, three or more) the most relevant experts out of M experts (4, 8, 16, 32, etc.), which is 
represented by the “Expert_1 (FFN1)” and “Expert_M (FFNM)”. For a given 𝑌𝑌𝑝𝑝 the output of Transformer block of the p 
parallel Transformer encoder (in EPT-MoE transformer, see Fig. 2), the output of the MoE layers is determined by the 
weighted sum of the outputs of the expert networks, where the weights are given by the gating network’s output. i.e. given 
M expert networks 𝐸𝐸 = {𝐸𝐸1, … ,𝐸𝐸𝑚𝑚 … ,𝐸𝐸𝑀𝑀}, the output of the expert layer is given by Eq. (4): 

 

� 𝐺𝐺�𝑌𝑌𝑝𝑝�𝑚𝑚.𝐸𝐸𝑚𝑚(𝑌𝑌𝑝𝑝)
𝑀𝑀

𝑚𝑚=1

                                  (4) 

 
Where: 𝐺𝐺�𝑌𝑌𝑝𝑝�𝑚𝑚denotes the M-dimensional output of the gating network for the m-th expert, and 𝐸𝐸𝑚𝑚�𝑌𝑌𝑝𝑝� is the output 

of the m-th expert network. To implement the gating network 𝐺𝐺�𝑌𝑌𝑝𝑝�, there are multiple alternative ways discussed in many 
works [1–3, 28], but a simple and performant one is implemented by taking the softmax over the Top-K logits of a linear 
layer as sparsely-gated mixture-of-experts layer in [1, 27]. We use the same implementation proposed in Mixtral 
Transformer: 

𝐺𝐺�𝑌𝑌𝑝𝑝� = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑎𝑎𝑆𝑆 �𝑇𝑇𝐴𝐴𝑇𝑇𝐾𝐾�𝑌𝑌𝑝𝑝,𝑊𝑊𝑔𝑔��                (5) 
 
Where the notation of the top values 𝑇𝑇𝐴𝐴𝑇𝑇𝐾𝐾�𝑌𝑌𝑝𝑝,𝑊𝑊𝑔𝑔� = (𝑇𝑇𝐴𝐴𝑇𝑇𝐾𝐾(𝑉𝑉))𝑖𝑖 ≔ 𝑉𝑉𝑖𝑖 if 𝑉𝑉𝑖𝑖 is among the top-K coordinates of logits 

𝑉𝑉𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀and (𝑇𝑇𝐴𝐴𝑇𝑇𝐾𝐾(𝑉𝑉))𝑖𝑖 ≔ −∞ otherwise. The value of K – the number of experts used per one input of the sequence – is a 
hyper-parameter that modulates the amount of compute used to process each input of the sequence.  

In a Transformer model [8], the MoE layer is applied independently on token and replaces the feed-forward (FFN) sub-
block of the transformer block. In Mixtral [1, 7], they used the SwiGLU architecture [25] as the expert function and set K=2 
(only two experts) with the total number of experts equals to eight. Each expert is itself a two-layer feed-forward (FFN) 
gated by SwiGLU activation function. This means each token is routed to only two SwiGLU sub-blocks with different sets of 
weights. In EPT-MoE Transformer, MoE layer is applied independently per each input of the sequence and replaces the feed-
forward (FFN) sub-block. We apply GELU (Gaussian Error Linear Unit) activation function [25, 26] as the expert function 
to gate each expert which is a two-layer feed-forward (FFN) with the model dimension fix to 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 128 and the hidden 
dimension set to 512. Meanwhile, we do not fix the value of K to 2 and it can be one, two or more experts in order to generate 
more possible configurations of MoE model to scale EPT-MoE model. This means each input of a sequence is routed to one, 
or more FFN sub-blocks gated by GELU [25, 26] with different sets of weights.  

 
𝐸𝐸𝑚𝑚�𝑌𝑌𝑝𝑝� = 𝐺𝐺𝐸𝐸𝐿𝐿𝐺𝐺𝑚𝑚(𝑌𝑌𝑝𝑝)                             (6) 
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Taking this all together, we compute the output 𝐺𝐺𝑝𝑝 for an input of sequence 𝑌𝑌𝑝𝑝 as: 
 

𝐺𝐺𝑝𝑝 = � 𝐺𝐺�𝑌𝑌𝑝𝑝�𝑚𝑚.𝐸𝐸𝑚𝑚�𝑌𝑌𝑝𝑝�
𝑀𝑀

𝑚𝑚=1

= � 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑎𝑎𝑆𝑆 �𝑇𝑇𝐴𝐴𝑇𝑇𝐾𝐾�𝑌𝑌𝑝𝑝,𝑊𝑊𝑔𝑔��
𝑚𝑚

.𝐺𝐺𝐸𝐸𝐿𝐿𝐺𝐺𝑚𝑚(𝑌𝑌𝑝𝑝)
𝑀𝑀

𝑚𝑚=1

    (7) 

 
This formulation is similar to Mixtral of Experts [1] and GShard architecture [3]. In Mixtral, they replace all FFN 

sub-blocks by MoE layers while GShard replaces every other block, and that GShard uses a more elaborate gating 
strategy for the second expert assigned to each token. In EPT-MoE, for each Transformer encoder, we add the MoE 
layer’s output 𝐺𝐺𝑝𝑝 of the p Parallel Transformer encoders 𝑂𝑂𝑃𝑃 = ∑ 𝐺𝐺𝑝𝑝

𝑝𝑝=𝑃𝑃
𝑝𝑝=1 . This output 𝑂𝑂𝑃𝑃 is passed to a new MoE layer 

for a new selection of the final decision.  

𝑍𝑍 = � 𝐺𝐺�𝑂𝑂𝑝𝑝�𝑚𝑚.𝐸𝐸𝑚𝑚�𝑂𝑂𝑝𝑝�
𝑀𝑀

𝑚𝑚=1

= � 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑎𝑎𝑆𝑆 �𝑇𝑇𝐴𝐴𝑇𝑇𝐾𝐾�𝑂𝑂𝑝𝑝,𝑊𝑊𝑔𝑔��
𝑚𝑚

.𝐺𝐺𝐸𝐸𝐿𝐿𝐺𝐺𝑚𝑚(𝑂𝑂𝑝𝑝)
𝑀𝑀

𝑚𝑚=1

    (8) 

 
The final linear layer (used as FFN classifier) is two-layer pointwise feedforward network (FFN) classifier interprets 

the output Z of the MoE layer (see Fig .2). We note O the total possible number of MoE layers in EPT-MoE model 
equals to the sum of 2 MoE layers and P MoE layers in the P Parallel Transformer encoders. 

Compared traditional single MoE Transformer with EPT-MoE architecture, we summary some differences : (1) 
Integrating parallel Transformer encoders with MoE layer; (2) replacing SwiGLU [1] by GELU; (3) extending the 
number of experts used per one input of the sequence (K) to be more than 2 [1]. The main advantages of parallel 
transformer with MoE layers: first, if one increases p (number of parallel Transformer) while keeping the total number 
of layers (Lp=4) fixed, one can decrease the model’s parameter count (See Table 1.) while enhancing its computational 
cost effectively and its recognition performance. Secondly, if one increases M (number of experts) while keeping K 
fixed, one can increase the model’s parameter count while keeping its computational cost effectively constant. Thirdly, 
it can be run efficiently on single GPUs with high performance specialized kernels. Finally, EPT-MoE architecture 
parameters are summarized in Table 1. 
 
4. Experimental Results 

In this section, we provide details about the datasets that we use for our experiments. Then, we provide details about 
the Efficient Parallel Transformers with Mixture-of-Experts (EPT-MoE), which is considered a family of sparse EPT-
MoE parallel transformer encoders coupled with MoE layer and spatial FFN and graph convolutional neural network 
(GCN) to recognize 3D hand gestures. Therefore, we first elaborate our EPT-MoE model transformer variations, hyper-
parameters, training settings, and training and evaluation protocols. We present different configurations (several 
variants) of EPT-MoE for 3D-skeleton sequences processing and theirs influences on the recognition performance, 
training time, model size, GPU model performance usage and inference. We discuss our EPT-MoE model variations 
with training details and analysis of the results obtained by EPT-MoE. We present the most important achieved and 
competitive results on main skeleton-based hand gesture benchmarks based on SHREC’17 Track dataset [15] for 
validation and testing. Finally, a comparison of our results with the state-of-the-art approaches is performed based upon 
on SHREC’17 datasets. Parallel Transformers coupled with Mixture-of-Experts has shown the effectiveness of EPT-
MoE architecture for 3D hand gesture recognition. 

 
4.1. Datasets and evaluation metrics 

In our experiments, we train and evaluate EPT-MoE Transformer using datasets from SHREC’17 TRACK [15]. It 
is one of the first benchmark for the recognition of hand gestures recorded in two configurations: 14 gestures performed 
using one finger and 28 gestures performed with the full hand. Each gesture is performed between 1 and 10 times by 28 
participants totalling 2800 sequences [11]. We split these sequences into 70 for training datasets and 30 split for 
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test/validation datasets. The SHREC’17 datasets is evaluated into one case for 14 gestures. For the evaluation metrics, we 
report the recognition test accuracy and the confusion matrix in our experiments. 

 
4.2. EPT-MoE Model Variations, Hyper-parameters and Training Setting 

Before going into the details of training efficiency, we first investigate the effect of various design choices on building 
EPT-MoE Transformer. In our work, we train several variants of EPT-MoE transformer to study the behaviour of parallel 
transformer and MoE models on the same training data (herein SHREC’17 datasets). Table 1 shows the architectures and 
sizes of EPT-MoE models with hyper-parameter settings of different scale EPT-MoE models ranging model size from 40.974 
(MB) to 76.430 (MB) that we trained in our experiments. We note P the total number of p Parallel Transformers, L is the 
number of encoder layers, H is the number of Heads, M is the number of experts in MoE layers, K the number of experts per 
Token in MoE layer, and O is the total number of MoE layers in all blocks of the EPT-MoE model. To study the effect of 
scaling the total number of P parallel Transformer encoders and MoE layers. First, we fix the GCN architecture as shown 
above in Section 3. The size of GCN architecture is 3.2 KB. In addition, we fix the linear layers of the linear classifier with 
size 131.0 KB. Then, we start by setting H the number of heads for the multi-head self-attention (MHSA) to H=8, and the 
model dimension 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 128. We fix the input sequence length T=8. We vary the total number P of parallel Transformer 
encoders, then varying the number Lp of encoder layers to each p parallel Transformer, the total number M of experts in 
each MoE layer, and the K the number of experts used per one input of the sequence in each MoE layer (See Table 1). For 
our hyper-parameters and training setting, a batch size of B=32 was chosen for training. We choose the Adam optimizer with 
β1 = 0.9, β2 = 0.98 and epsilon ε= 10−9. We varied the learning rate over the course of training with an annealing learning 
rate that drops from 1e-3 to 5e-6. The initial learning rate was set to 1e-3, reduced by a factor of 0.5 if the learning stagnates 
and the loss does not improve in the next 5 epochs. The training stops if the validation accuracy does not improve in the next 
50 epochs. For SHREC’17 datasets, we uniformly sample eight frames from each video as the input of GCN. The dropout 
for all layers set to 0.1 and the loss function is Cross-entropy. 

 
Table 1: Architectures and sizes for 4 variants of EPT-MoE model, Recognition accuracy (%) on test datasets for 4 model variations of 

the EPT-MoE architecture trained on SHREC’17 (14 Gestures) using GPU Model Performance (Tesla V100-SXM2-16GB). 
 

Name of Project 
RUNS on wandb.ai 

EPT-
MoE 

Model 
N° 

EPT-MoE Transformers with MoE Layers Model  
params size 

(MB) 

Recognition 
test accuracy 

(%) 

Mean of 
GPU 

Power 
usage 
(Watt) 

GPU 
Memory 
Allocated 

(%) 

GPU 
Power 
Usage 
(%) Parallel Transformer MoE Layers nparameters 

p Lp H M K O 
festive-festival-100 Model 1 1 L1=4 8 16 2 2 58.977 91.34 47.96 10.57 15.96 

beaming-festival-116 Model 2 1 L1=4 8 8 3 3 40.974 92.18 46.23 16.33 15.36 
spring-energy-141 Model 3 4 L1=1 8 8 2 5 76.430 92.63 46.15 15.55 15.43 

L2=2 
L3=3 
L4=4 

toasty-field-8 Model 4 3 L1=1 8 8 2 3 42.105 92.10 47.20 11.68 15.73 
L2=2 
L3=3 

 
We evaluate several variants of EPT-MoE model by comparing with the obtained results from SOTA methods for 3D-

skeleton hand gesture recognition (see Table 2.). We conduct this comparison on SHREC’17 datasets. Fig.3 shows the overall 
performance for recognition test accuracy and training for several EPT-MoE models. Undoubtedly, the ensemble of EPT-
MoE models brought about a significant performance boost. However, the improvement in accuracy does not come at the 
price of requiring a greater amount of model parameters. EPT-MoE Model 3 (spring-energy-141) needing 76.2MB 
parameters achieved an accuracy of 92.63% with a relative time about 1hours and 40 minutes. We conduct our experiments 



 
 

 
 

 
 

MVML 105-10 

using PyTorch on GPU NVIDIA (Tesla V100-SXM2-16GB), Google Colab, Weight & Bias AI Platform 
(https://wandb.ai/site ). 

 
 
 

Fig. 3: Overall performance of 17 variants of EPT-MoE model (figures and reports are generated using Wandb based on an extensive 
experiments and Training EPT-MoE Models) where N° refers to model number as given in Table 1. 

 

 
Fig. 4: Confusion matrix of SHREC’17 (14 Gestures) for (a) the best EPT-MoE Model 3 with recognition accuracy 92.63 %, and (b) 

STr-GCN. 
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Fig.4 shows the confusion matrix from pre-trained model for the highest performance of EPT-MoE Model 3 compared 
with our experiments of STr-GCN. We collect most of the results in Table 2 from STr-GCN[3], STA-GCN [16] and DG- 
STA [9]. EPT-MoE achieves the performance of STr-GCN and STA-GCN methods based on the graph representation of the 
3D-skeleton hand. 

 
  Table 2: Recognition accuracy for the best model of the EPT-MoE architecture trained on SHREC’17 (14 Gestures) in 

comparison with three principal state-of-the-art methods. 
Tested SOTA and 
Proposed Models 

EPT-MoE Transformers with MoE 
Layers 

Model params size 
(MB) 

Recognition 
test 

accuracy 
(%) 

Mean of 
GPU Power 

usage 
(Watt) 

GPU 
Memory 
Allocated 

(%) 

GPU 
Power 
Usage 

(%) 
Parallel Transformer MoE Layers nparameters 

p Lp H M K O 
EPT-MoE 
Model N° 3  

(spring-energy-141) 

4 L1=1 8 8 2 5 76.430 92.63 46.15 15.55 15.43 
L2=2 
L3=3 
L4=4 

STA-GCN [16] - - - - - - - 92.70 - - - 
STr-GCN [11] 1 6 8 0 0 0 - 92.76 - - - 
DG-STA [9] - - - - - - - 94.40 - - - 

 
4. Conclusion and Perspectives 

In this paper, we proposed a new deep learning architecture named EPT-MoE (Efficient Parallel Transformers with 
Mixture-of-Experts) for 3D skeleton-based hand gesture recognition. EPT-MoE utilizes a parallel configuration of 
Transformer encoders coupled with Mixture-of-Experts (MoE) layers. The MoE layer of EPT-MoE is inspired from 
Mixtral/Mistral-7B Transformers. EPT-MoE aims to enhance the ability of parallel Transformer models with MoE layers, 
Spatial FNN and GCN for graph learning of hand gesture recognition using 3D hand skeleton data. We explored several 
variants of EPT-MoE transformer in order to understand theirs behaviours on the same training data. We performed extensive 
experiments and have demonstrated the robustness of the best variants of our EPT-MoE transformer model in dealing with 
SHREC’17 Track benchmarks. The experiments show the efficiency of three top-model variations of the proposed EPT-
MoE, which achieves or outperforms the state-of-the-art. In future works, we will interest to propose multi-modal EPT-MoE 
transformers to exploit multi-sources (RGB Videos, Depth-information, LIDAR and IR). We intend to evolve EPT-MoE 
architecture for human motion prediction and action recognition tasks required in Human-Machine Interaction applications. 
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