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Abstract - Magnetic resonance Image MRI with various protocols is extensively used for diagnosis because it gives detailed images. 

Still, its acquisition time is excessively long, which causes motion artifacts due to patient impatience. To accelerate, two key strategies 

were utilized to decrease acquisition time parallel imaging and compressed sensing. Parallel imaging reduces time by simultaneously 

capturing subsampled MRI data acquired from multiple receiver coils. Compressed sensing acquires partially observed k-space data using 

regularized iterative optimization techniques. Both methods provide complementary possibilities for speeding up MRI acquisition. 

Recently Our proposed architecture uses an exclusive two-phase technique, Image2Image Understanding and Reconstruction, to rebuild 

MR images from under-sampled k-space data. In the first phase, a U-Net is trained on images reconstructed from full sampled k-space, 

laying the groundwork for future reconstruction. In the second phase to subsample images we apply the radial mask to k-space: a Fourier 

transform. The reconstructed images from subsampled k-space are used to train the trained U-Net from the first phase to improve image 

details as if it is reconstructed from a fully sampled k-space. This dual-phase technique improves performance by modifying the U-Net 

to learn image structure from fully sampled k-space first, establishing a solid foundation for future high-quality image reconstruction 

from subsampled k-space. The stability created in the first step saves time and minimizes processing power needs in the second phase. 

Keywords: MRI reconstruction, k-space, deep learning, U-Net, fastMRI. 

 

1. Introduction 
Magnetic Resonance Imaging (MRI) is the leading diagnostic modality for a wide range of illnesses, including 

musculoskeletal, neurological, and oncological conditions. MRI does not employ harmful ionizing radiation. However, the 

inherent sluggishness of the MRI data collecting process, caused by its underlying physics, distinguishes it from speedier 

alternatives such as CT or X-ray [1]. Consequently, the persistent focus of research over the decades has been to expedite 

the MRI acquisition speed. Reducing MRI scan times has benefits like improving patient satisfaction, cutting motion 

artifacts, and lowering medical costs. Scan duration is linked to the number of phase-encoding steps in k-space, and efforts 

to expedite MRI involve omitting specific lines while addressing aliasing issues from Nyquist criterion violations. 

Compressed Sensing and Parallel Imaging have achieved significant progress in fasten MRI acquisition [2], [3]. To reduce 

or decrease aliasing artifacts, compressed sensing MRI can be viewed as sub-Nyquist sampling approach that compensates 

for under-sampled data by gathering fewer samples than typical signal processing methods. Previous knowledge of MR 

images is acquired from unmeasured k-space data. Parallel MRI, on the other hand, uses numerous receiver coils with space-

dependent properties to reduce aliasing effects [4]. A potential for fast MRI strategy involves under-sampling k-space, 

leading to an acceleration rate that is proportionate to the degree of under-sampling. This paper focuses solely on single-

channel MRI so Parallel MRI will not be discussed. Deep learning, a method for representing complicated abstractions in 

data via numerous layers of processing, has lately gained prominence, owing to the availability of powerful GPUs. 

Convolutional neural networks (CNNs) have shown useful in solving complex vision problems such as action detection, 

super-resolution, and denoising. CNNs have various benefits, including independence from past information, no requirement 

for hand-engineered feature design, and a strong capacity to capture visual structures. These characteristics influenced our 

decision to use CNNs for reconstructing MR images from under-sampled k-space data [5]. 
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2. Background and Related Work 
2.1. MRI Acquisition  

MR scanners image a patient’s anatomy by acquiring measurements in the frequency domain using a measuring 

instrument called a receiver coil. In clinical settings that frequency domain is known as k-space where K refers to the spatial 

wave number and images can be obtained by applying two-dimensional Fourier transform F. 
 

Images = F -1(K) (1) 

 

As our aim is to accelerate MRI acquisition, the k-space is subsampled with acceleration factor represented as R is used 

to define the degree of acceleration, also known as R-fold acceleration. R is calculated by dividing the total number of k-

space measurements necessary for a full scan by the number of measurements obtained. The sub-sampled k-space 

measurements can be defined in terms of the fully-sampled k-space measurements [6] where M denotes sampling mask. 
 

k = M⊙K (2) 

 

2.2. Deep Learning Accelerating MRI Reconstruction 

The latest developments in Deep Learning (DL), particularly in Convolutional Neural Networks (CNNs), have facilitated 

their utilization in various domains, including addressing inverse problems in imaging, notably tasks related to Accelerated 

MRI Reconstruction. When integrated with PI-CS, DL-based techniques demonstrate superior performance compared to 

conventional PI and CS methods. This results in reconstructed MR images that exhibit fewer artifacts[1], [7] . All these deep 

learning-based algorithms are designed to take an image reconstructed from under-sampled k-space as input and output an 

image reconstructed from fully sampled k-space; however, detailed structures in the input images to CNNs are likely to be 

distorted or even disappear. While there have been recent attempts to restore properly sampled images from under-sampled 

k-space [8]. Our Method get a high resolution even with U-Net which is a very basic architecture. 

 

3. Method 
In our architecture, to allow the network to fully utilize all of the information needed from the images to get high-

resolution image from subsampled k-space, we divided our architecture into two stages. The first phase, Image2Image 

Understanding, consists of training a U-Net that seeks to recreate high-resolution images from images reconstructed from 

full sampled k-space . Initially, Images are translated into k-space using the Fourier transform and multiplied by the 

subsampling mask to get subsampled k-space. The subsampled k-space is then translated back into the image domain via the 

inverse Fourier transform. U-Net is trained using reconstructed images from subsampled k-spaces. This dual-phase technique 

improves image reconstruction performance by modifying U-Net to be trained on image structure first from images collected 

from fully sampled k-space, laying a solid foundation for the next phase, which involves reconstructing an image from 

subsampled k-space with high detail as if it were reconstructed from fully sampled k-space. 

 

Fig. 1: Our two-phase architecture begins with Image2Image Understanding then the obtained weights are then employed in the 

Reconstruction phase. 
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3.1. Image2Image Understanding Phase 

The initial model acts as a fundamental model for obtaining launching weights by utilizing previous information encoded 

in images that reflect high-quality, detailed. Using U-Net to encode the image features to be used in the reconstruction phase. 

This collection of images serves as a standard of excellence before the subsampling process, introducing stability in the 

second phase. In other words, it acts as a pre-trained model that needs to be fine-tuned later. This stabilization not only saves 

time but also decreases the processing power necessary for the next phase. 
3.2. Reconstruction Phase 

The Reconstruction Phase begins with translating images I to k-space K using a two-dimensional Fourier transform and 

adding measurement noise to them. To mimic the k-space transformation, which is a complex data type with both input and 

output being actual data, each image in the spatial domain with one channel is transformed to two channels in k-space that 

represent the k-space phase and magnitude respectively. 
K = F(I) + e (3) 

Then applying sampling mask to each channel in k-space using (2) to get subsampled k and using k in (1) get noisy 

images served as input for U-Net. U-Net initially began with weights created by Image2Image Understanding network. With 

this prior information, U-Net can rebuild high-quality images with fine details from noisy images without the requirement 

for k-space training and simply on the spatial domain. 
3.3. U-Net 

Main block in our architecture is U-Net which is useful for image-to-image mapping tasks. As it encode the most 

important features in the image and then decoded it back. The use of pooling and up-sampling layers enables the learning of 

usable feature maps across many sizes and abstraction levels. The U-Net uses a multi-resolution feature representation to 

forecast higher-level information at the decoder's lowest level, gradually adding finer, higher-frequency details through up-

sampling layers. 

 

Fig. 2: Our U-Net architecture  

3.4. Loss Function 

For image reconstruction problems, the most used loss function is MSE, which is L2 loss, and MAE, which is L1. Both 

have advantages and disadvantages. For L2, the main disadvantage is that it produces blurring images, and in MR imaging, 

details are very important. For that point, L1 is much better because it preserves edges, but L1 has a withdraw, which may 

produce images with less contrast, and L2 does not have that withdraw, so we need to use both with different ratios so our 

loss L. Furthermore, in the context of Compressed Sensing (CS) and speeding up the model conversion process, using a 

linear mix of L2 and L1 loss functions is critical. This smart combination optimizes the reconstruction process by reducing 

the blurring effects of L2 while keeping important features using L1's edge-preserving properties. A well-balanced and 

efficient model conversion for rapid image reconstruction relies heavily on the linear combination of these loss functions, 
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which are tuned with optimal ratios. We used grid search to get optimum α and 1-α for L1 and L2 respectively. Given a 

ground truth image g and a test image f, both of size M×N, our customized loss between g and f is defined by: 

𝐿𝑜𝑠𝑠(𝑔, 𝑓) = 𝛼 𝑀𝑆𝐸(𝑔, 𝑓) + (1 − 𝛼) 𝑀𝐴𝐸(𝑔, 𝑓) 
 

     (4) 

4. Experiments 
4.1. Dataset 

The dataset utilized in that work is from the fastMRI dataset [9], which is the result of a collaboration between the Center 

for Advanced Imaging Innovation and Research (CAI2R) and Facebook AI Research (FAIR) on fastMRI - a joint research 

initiative to investigate the use of AI to speed up MRI scans by up to 10 times [4]. The dataset contains two forms of raw 

data, unprocessed complex-valued multi-coil MR readings and DICOM images. The data was intended to assist two types 

of challenges. There are two reconstruction tasks: single coils and multi-coils. We worked on the single-coil reconstruction 

assignment. The fastMRI dataset provides two types of DICOM data: Brain DICOM and Knee DICOM. Our results rely on 

Brain DICOM data that are axial 2D image volumes with different pulse sequence T1, T2, and T2 FLAIR. We trained our 

architecture on two experiments using T1 and T2 separately. Our dataset is divided into training, testing and validation sets 

with 70%, 20% and 10% respectively. 

 

Fig. 3: Samples fromT1 DICOM data 

4.2. Mask 

To sample k-space, we implemented a radial subsampling mask with varying acceleration rates, specifically R = 10 and 

R = 5. As the acceleration rate increased, the reconstruction process became more challenging. The intuition for using radial 

mask as k-space can be filled with radial sampling lines. 

 

(a)        (b)               (c)   (d) 

Fig. 4(a). Radial Mask with R= 4. Fig. 4(b). Radial Mask with R= 5. Fig. 4(c). Radial Mask with R= 8. Fig. 4(d). Radial Mask with 

R= 10. 

4.3. Evaluation Metrics 

A traditional approach for evaluating image reconstruction employs quantitative measurements, namely the Peak Signal-

to-Noise Ratio (PSNR) and the Structural Similarity (SSIM) index. PSNR is defined as the ratio of the power of the highest 

potential image intensity inside a volume to the power of distortion noise and other faults. This metric gives a quantifiable 
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assessment of the reconstructed magnitude image's faithfulness to the ground truth. Given a ground truth image g and a test 

image f, both of size M×N, the PSNR between g and f is defined by: 

𝑃𝑆𝑁𝑅(𝑔 , 𝑓) =  10 𝑙𝑜𝑔10

2552

𝑀𝑆𝐸(𝑔, 𝑓)
 

 

(5) 

The SSIM index, on the other hand, uses interdependencies among neighbouring pixels to determine the similarity 

between two images. SSIM examines the structural attributes of objects in images and computes at various image regions 

using a sliding window technique, allowing for a nuanced analysis of the structural congruence between the reconstructed 

image and ground truth image[5]. SSIM is designed by modeling any image distortion as a combination of three factors that 

are loss of correlation, luminance distortion and contrast distortion. The SSIM is defined as: 
𝑆𝑆𝐼𝑀(𝑔 , 𝑓) =  𝑙(𝑔, 𝑓)𝑐(𝑔, 𝑓)𝑠(𝑔, 𝑓) 

 

(6) 

The first is term the luminance comparison function which measures the closeness of the two images. The second 

term is the contrast comparison function which measures the closeness of the contrast of the two images. The third term 

is the structure comparison function which measures the correlation coefficient between the two images. 
 

 

4.4. Training Details 
Our U-Net model was implemented with PyTorch and five scales: 64, 128, 256, 512, and 1024 filters for convolutional 

layers with kernal sizes of 3x3, followed by a batch normalization layer. The input and output images are 256X256 in size 

in some experiments and in other 320x320, and the ReLU activation function is employed. Same U-Net used in both phases.  

Model was optimized using AdamW with weight decay 0.00001 and fixed learning rate 0.001. Each phase trained for 200 

epoch with 16 batch size without adding any data augmentation. The approximate trainable parameters of our model is 31.4M 

parameter. 

5. Experimental Results 

To provide a different point of view of our results, we studied several acceleration rates and time sequences to ensure 

our technique's competitiveness. In our search for similar models, We uncovered the basic model of the fastMRI dataset, 

which is a U-Net architecture on the T1 brain dataset. As a consequence, we looked at other models with similar qualities, 

such as architecture, subsampling mask, and time sequence. Table (1) presents a thorough comparison of our data with these 

selected models., allowing us to assess their efficacy and distinctiveness. 

As DuDoRNet [8] employed various masks with varying acceleration rates, one of which is a radial mask with 

acceleration factor 5 so it used in 5 acceleration factor only. Even though the datasets acquired an in-house, but it still have 

some thing in common that we could compare with. U-Net stated in [9] employs a mask linked to the [4] dataset with 

acceleration factors 5 and 10 The U-Net[7] has essentially the same convolution filter, and 64, 128, 256, and 512 will be 

included in the comparison. 
 

Table 1:  Other Approaches Details 

Model Dataset Mask Type R Sequence 

fastMRI 

BaseModel[4] 

fastMRI Cartesian  4,8 T1 

U-Net [7] Calgary-Campinas Provided in 

dataset 

5,10 T1 

DuDoRNet [8] In-house Radial 5 T2 
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Table 2:  Experimental results 

R Sequence 

Comparative Results 

Model 

Metric 

Our Approach Output Sample 
SSIM PSNR 

4 
T1 

fastMRI BaseModel [4] 0.9275 36.24 

 
Ours 1.0 69.56 

5 

T1 
U-Net [6] 0.8682 29.25 

 
Ours 0.999 71.67 

T2 

DuDoRNet [8] 0.981 40.815 

 
Ours 1.0 63.55 

8 T1 

fastMRI BaseModel [4] 0.8837 32.02 

 
Ours 1.0 66.534 

10 T1 

U-Net [6] 0.8177 27.23 

 
Ours 0.9999 60.8 

 

6. Conclusion 
Our findings indicate that our two-phase approach works well for MR image reconstruction, even with varying time 

sequences and acceleration rates, producing competitive results even though all training is done in the image domain. The 

Image2Image Understanding step guarantees that the U-Net catches critical information from fully sampled k-space, 

establishing the groundwork for future reconstruction. The Reconstruction phase successfully converts images into k-space, 

eliminating the requirement for k-space training and allowing the U-Net to reconstruct high-quality images directly in the 

spatial domain. The strategic combination of L2 and L1 loss functions, tweaked via grid search for optimal ratios, improves 

the model's performance by decreasing blurring effects while keeping key characteristics. The positive results demonstrate 

the potential of our approach in enhancing rapid MR imaging techniques and provide useful insights for future study in this 

area. 
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7. Future Work 

Our future attempts will entail investigating different masks, such as the spiral mask, with varying acceleration speeds. 

To offer a more impartial comparison of models, we intend to train their architectures on the public CalgaryCampinas dataset 

while using the same mask across all instances. 
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