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Abstract – Classifying complex networks has become highly significant in network analysis. Graph Neural Networks (GNNs) have 
successfully succeeded in this particular task. However, GNNs suffer from limited network representation as they rely solely on scalar-
based features for node properties. GNNs' message-passing methods suffer from oversmoothing and lack global information on 
complex networks. Data augmentation is also impossible for GNN, so obtaining reasonable classifications in small datasets is an open 
issue. Deng's entropy of complex networks captures the network's topology and the valuable information generated by the nodes and 
edges to solve the problems arising from complex networks and unlock their full potential. Our proposed method utilizes Deng's 
entropy to calculate an entropy sequence incorporating local and global features at multiple scales. We then combine the entropy 
sequences for nodes and edges into a matrix fed into a bidirectional bLSTM network to perform complex network classification. 
 
Keywords: LSTM, Deng entropy, complex network, classification. 
 
 
1. Introduction 
 Complex network classification is a process that involves associating a given complex network with a label. A 
function needs to be estimated that maps each complex network to its corresponding label [1]. In supervised classification, 
a model is trained using labeled complex networks, and then the same model is used to assign category labels to unlabeled 
complex networks[2]-[4]. 
 Calculating topological metrics, such as diameter, assortativity, degree, and cluster coefficient, becomes 
increasingly challenging as the number of complex networks to be classified grows[5]. In addition, the effectiveness of 
the topological features in classifying complex networks is highly dependent on the domain of the complex network[6]. 
 One approach to classifying complex networks is based on kernel function. It involves collecting a set of complex 
network features or frequent subnetworks and then using a similarity measure to compare two complex networks [1], [7], 
[8]-[9]. It has been observed that the limited availability of labeled complex networks used for training results in poor 
classification performance due to an increase in metrics compared to the number of complex networks[5]. A detailed 
survey and experimental analysis of the current complex network kernels indicate that their performance is influenced by 
various features of complex networks, including density, size, number of complex networks, global structure, and node 
attributes[10]. 
 Graph neural networks (GNN) are a type of neural network that can depict network topology and generate 
information aggregation operations. The architecture of GNN consists of a convolutional and pooling layer. The 
convolutional layer extracts the local structure of the complex network to add  node features, and the pooling layer selects 
these features to be embedded in a complex network representation for the classification task[3]. Complex networks are 
non-Euclidean objects made up of a set of nodes and their relationships (edges), and as a result, the GNN can lose local 
and global information when convolution and pooling operations are used[11]. Various approaches have been 
designed[12] to address these complications. For example, neighbor aggregation (message passing), message passing via 
recurrent neural networks, and attention mechanisms have been proposed[13]. Other approaches employ vector 
representation of complex networks using Word2Vec and Doc2Vec to extract relevant features from subnetworks to build 
the feature vector representation used for the classification task[14]-[15]. 
 It is crucial to have high-quality complex network representations that capture the various topology structures 
while accounting for the uncertainty in each complex network to classify complex networks effectively. Additionally, the 
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representations should preserve the features of the nodes and edges from both local and global perspectives. To address 
these requirements, we have proposed a complex network classification method that utilizes Deng entropy, which is 
calculated by applying a defined mass of function of nodes and edges. This approach feeds into the classification task's 
bidirectional long short-term memory (bLSTM). Our study's main contributions can be summarized as follows: 

● The topology of the complex network is represented by two data sequences that correspond to the calculation of 
the Deng entropy of nodes and edges. To this end, a mass is introduced for nodes and edges. 

● The mass functions are based on an algorithm called box-covering. It involves using different sizes of boxes to 
analyze the complex network, with the diameter of the complex network plus one being used as the box size 𝜀𝜀 =
1 𝑡𝑡𝑡𝑡 𝜀𝜀 =  ∆. By computing from lower 𝜀𝜀 values to the maximum one, the technique can capture the local and 
global topology of the complex network at different scales. 

● We tested our approach on real-world and synthetic complex networks to evaluate the effectiveness of DE-bLSTM 
classification on different complex network domains. Our results demonstrate that the approach is effective for 
intra-domain complex network classification and cross-domain classification. 

  The article is structured as follows: Section 2 provides an overview of the related work, while Section 3 outlines 
the background information necessary to introduce the DE-bLSTM approach in Section 4. The results of the complex 
network classification using De-bLSTM are presented in Section 5, and finally, Section 6 concludes our findings. 

 
2. Related work 
Complex network classification is a crucial task that assigns class labels to complex networks using models based on 
training data[4]. It helps solve real-life classification problems[5] and has many models for predicting the class of 
unknown complex networks or understanding complex structures[9]. In this section, we will briefly review network 
classification methods. 

 
2.1. Kernel methods 
 Kernel functions are popular for measuring similarity between complex networks. Various complex network 

kernels have been proposed for different applications[10]. In bioinformatics, protein function can be predicted using 
secondary and tertiary protein structures represented by plane-labeled geometric complex networks [2]. A classification 
prediction model based on these structures can help identify basic protein functions. 
 These methods have been developed to calculate complex network similarity and predict possible complex 
network labels. The kernel methods are designed under the R-convolution framework[5], [16]. However, some methods 
only consider local complex network properties, such as subtrees, and cannot capture global complex network properties, 
such as connected components and cycles. Wasserstein's WL method was proposed. K-WL is based on the k-dimensional 
Wes-Feiler-Lehman algorithm, which balances global and local subtree kernels to analyze the entire complex network[17]-
[18]. A survey of kernel approaches and their performance comparison can be found in[10]. 

 
2.2. GNN methods 
 Graph Neural Network (GNN) is a powerful tool for learning node and complex network embeddings. GNN 
operates through message passing (MPNN) between neighboring nodes, enabling it to learn complex network structures 
[19]. However, GNN's performance tends to be poor when predicting tasks requiring long-range interactions, and the 
structure of the complex network results in long-range neighbors that grow exponentially. It also suffers from the over-
smoothing problem and lack of global structural information[3]. 
 Researchers have improved GNN methods for complex network classification by proposing different methods, 
such as Graph Convolutional Networks (GCN) and  Graph Attention Networks (GAT)[17], [21]. These approaches learn 
effective node-level representations and use centrality-based edge-importance for complex network compression, which 
filters out trivial structures and perturbations in the input complex networks. To achieve complex network classification 
tasks, researchers employ graph-level embeddings through maximum or average pooling[18]. 
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2.3. Graph pooling methods 
 This method extracts essential structural information with different granularities using multiple complex network 
convolution and pooling operations. It considers both node features and complex network topology. GNN methods for 
complex network classification can be categorized into global and hierarchical pooling[20]. 
 Global pooling methods are used in GNN to calculate the complex network representation vector. However, the 
expressive power of these methods is limited, and they can result in inaccurate classification[22]. A new global pooling 
method has been proposed to address these issues and improve global representation and classification accuracy, 
increasing attention to modeling sequence data[23]. 
 Hierarchical pooling methods reduce a complex network size by deleting or fusing nodes. It condenses local 
neighborhoods into a single node[20], extracting important structural and node information. An extra pooling operation 
reduces complex network size, and the updated features and reconstructions of the adjacency matrix improve the complex 
network representations[22]. It captures hierarchical information compositionally by aggregating messages on an 
increasingly coarser complex network. 
  
2.4. Capsule network method 
 Zuo [3] and Yin  [24] , have proposed new methods for graph classification using capsule networks. Zuo's method 
converts node features into capsules and uses dynamic routing to generate graph capsules, while Yin's CapsualGNN 
(GCN) groups nodes as capsules and generates multiple embeddings for each graph. Both methods introduce techniques 
to capture global and structural information between nodes.  
 
2.5. Graph pyramid method 
 Ji [25] and Lu [20] proposed novel graph-based neural network architectures for different tasks. Ji utilized a 
Pyramid Graph Transformer (PyGT) for handwritten Chinese character recognition, while LU proposed a Feature 
Pyramid-based Graph Convolutional Neural Network for Graph Classification (FPGCN-GC) method. Both approaches 
improved the accuracy of their respective tasks by incorporating graph attention mechanisms and residual connections.  
 
3. Preliminaries 
 This section will define the notations used in each of the sections of the paper and explain the main terms. We 
will use "graph" and "complex network" interchangeably. However, the main difference is that complex networks have 
unique topological features such as small-world property[26], scale-free degree distribution[27], and fractality[28]. They 
are the backbone of complex systems, including social, technological, and biological networks[29]. 

A complex network is defined as:  
 G= (V, E),  

 
where V is a finite set of nodes and E is a symmetric and reflexive relation on V. Entropy is an instrument for 

measuring the complexity of systems, including complex networks, so the following section introduces the concept of 
entropy. 
 
3.1. Shannon entropy 
 Shannon entropy is obtained from a probability distribution 𝑃𝑃 = {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑁𝑁}, under a probability space           
𝑋𝑋 = {𝑥𝑥1,𝑥𝑥, … , 𝑥𝑥𝑁𝑁}, by: 
 

𝐼𝐼 =  −�
𝑁𝑁

𝑖𝑖=1

𝑝𝑝𝑖𝑖 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖 , 
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where N is the total number of probabilities 𝑝𝑝𝑖𝑖 and ∑𝑁𝑁𝑖𝑖=1 𝑝𝑝𝑖𝑖 = 1. The maximum Shannon entropy is achieved when 
𝑃𝑃 is observed to be  a uniform distribution; consequently, when 𝑝𝑝𝑖𝑖 = 1

𝑁𝑁
    𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 =𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 𝑁𝑁  

3.2. Deng entropy 
 Deng entropy is a probabilistic measure of uncertainty that considers non-specificity and discord in basic 
probability assignment (BPA). We can define a set 𝑋𝑋 consisting of 𝑁𝑁 mutually exclusive and collectively exhaustive events 
denoted by 𝑋𝑋 = {𝜃𝜃1   ,𝜃𝜃2, … ,𝜃𝜃𝑁𝑁}, where 𝑋𝑋 is defined as a frame of discernment. The power set of 𝑋𝑋 is: 
 2𝑋𝑋 = {∅, … ,𝜃𝜃1}, … , {𝜃𝜃𝑁𝑁}, {𝜃𝜃1,𝜃𝜃2}, … , {𝜃𝜃1,𝜃𝜃2, … , 𝜃𝜃𝑁𝑁−1}, … ,𝑋𝑋  

 The frame of discernment is denoted by 𝑋𝑋, and the mass function is represented by the map 𝑚𝑚 from 2𝑋𝑋 to [0, 1]. 
The mass function is also known as BPA, and it must fulfil the following conditions: 
 
 

𝑚𝑚(∅) = 0, �
𝐴𝐴�2𝑋𝑋   

𝑚𝑚(𝐴𝐴) = 1. 
 

(2) 

 where 𝐴𝐴 indicates a focal element of 𝑚𝑚 and 𝐴𝐴 � 2𝑋𝑋. 
 Having 𝑚𝑚1 and 𝑚𝑚2 as two BPA; to join the pieces Dempster's combination rule is applied [30] 
 
 𝑚𝑚(𝐴𝐴) = 1

1−𝐾𝐾
 ∑𝐵𝐵∩𝐶𝐶=𝐴𝐴 𝑚𝑚1(𝐵𝐵)𝑚𝑚2(𝐶𝐶), (3) 

  
Where 𝐵𝐵 is the focal element of 𝑚𝑚1,𝐶𝐶 is the focal element of 𝑚𝑚2, and  the conflict coefficient of the two BPA's is K, which 
is given by: 
 
 𝐾𝐾 = ∑𝐵𝐵∩𝐶𝐶=0 𝑚𝑚1(𝐵𝐵)𝑚𝑚2(𝐶𝐶), (4) 

 
Only when 𝐾𝐾 < 1 Eq. (3) is applicable. 
Deng's entropy is a measure of uncertainty for BPA[31], It is defined as follows: 
 

 
𝐼𝐼𝐷𝐷 = − �

𝐴𝐴�2𝑥𝑥
𝑚𝑚(𝐴𝐴) 

𝑚𝑚(𝐴𝐴)
׀𝐴𝐴׀2 − 1

=  �
𝐴𝐴�2𝑥𝑥

𝑚𝑚(𝐴𝐴) ׀𝐴𝐴׀2� − 1� − �
𝐴𝐴�2𝑥𝑥

𝑚𝑚(𝐴𝐴)𝑚𝑚(𝐴𝐴)   
(5) 

  
Where m is the mass function, that is defined in the frame X, A is a focal element of m, and ׀A׀ denotes A's cardinality. 
When the mass function is  
 

𝑚𝑚(𝐴𝐴) =  
׀𝐴𝐴׀2 − 1

∑𝐴𝐴�2𝑥𝑥 ׀𝐴𝐴׀2 − 1
 

 
(6) 

 
Deng's entropy aims its maximum[32] 
 

 
𝐼𝐼𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 =𝑙𝑙𝑡𝑡𝑙𝑙 𝑙𝑙𝑡𝑡𝑙𝑙 (�

𝐴𝐴�2𝑥𝑥
׀𝐴𝐴׀2 − 1)  

(7) 

  
The Shannon entropy is obtained by degenerating the BPA into a probability distribution. This verifies that the focal 
element is a singleton.. Consequently, ׀A 1 =׀. From Eq.(5), the term ∑𝐴𝐴�2𝑥𝑥 𝑚𝑚(𝐴𝐴)(2׀𝐴𝐴׀− 1)  is the measure of total non-
specificity, and the measure of discord in the mass function m among various focal elements is the term 
−∑𝐴𝐴�2𝑥𝑥 𝑚𝑚(𝐴𝐴)𝑚𝑚(𝐴𝐴) . Accordingly, Deng's entropy is a composite measure. 
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4. Deng entropy and complex network classification 
4.1. Deng entropy of networks 
 To adopting 𝐼𝐼𝐷𝐷 from Eq. (5), It is possible to obtain the Deng entropy of networks by: 
 
 

𝐼𝐼𝐷𝐷(𝜀𝜀) = �
𝑁𝑁𝑏𝑏(𝜀𝜀)

𝐴𝐴𝑖𝑖�𝑋𝑋 𝑖𝑖=1 
𝑚𝑚(𝐴𝐴𝑖𝑖)

𝑚𝑚(𝐴𝐴𝑖𝑖)
׀𝐴𝐴𝑖𝑖׀2 − 1

  
(8) 

  
 Where X represents the set of nodes or edges that are partitioned into subsets or boxes 𝐴𝐴𝑖𝑖, 𝑁𝑁𝑏𝑏(𝜀𝜀) is the minimum 
number of boxes that cover the network for the size of 𝜀𝜀, and ׀𝐴𝐴𝑖𝑖׀ is the cardinality of 𝐴𝐴𝑖𝑖. Boxes are discovered by the 
coloring box-covering algorithm. The boxes of 𝐴𝐴𝑖𝑖 consist of different nodes for each 𝜀𝜀. 
 The mass function of BPA for nodes is determined by: 
 
 

𝑚𝑚𝑉𝑉(𝐴𝐴𝑖𝑖) =  
׀𝐴𝐴𝑖𝑖׀
𝑁𝑁𝑉𝑉

 
(9) 

  
 Where ׀𝐴𝐴𝑖𝑖׀ represents the number of nodes in 𝐴𝐴𝑖𝑖 and 𝑁𝑁𝑉𝑉 is the number of nodes contained in the network. The 
box-covering algorithm does not allow overlapping boxes, so each 𝐴𝐴𝑖𝑖 is a mutually exclusive subset of X, thus, 
∑𝐴𝐴𝑖𝑖�𝑋𝑋 𝑚𝑚𝑉𝑉(𝐴𝐴𝑖𝑖) = 1. 
 For edges, the mass function is defined by 
 
 

𝑚𝑚𝐸𝐸(𝐴𝐴𝑖𝑖) =  
𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖(𝐴𝐴𝑖𝑖) +  𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑖𝑖(𝐴𝐴𝑖𝑖)

2
𝑁𝑁𝐸𝐸

 
 (10) 

  
 Where 𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖(𝐴𝐴𝑖𝑖) represents the number of edges that connect the nodes in 𝐴𝐴𝑖𝑖, and 𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑖𝑖(𝐴𝐴𝑖𝑖) represents the 
number of edges that connect the nodes of the box 𝐴𝐴𝑖𝑖 with nodes in another box 𝐴𝐴𝑗𝑗, for 𝑖𝑖 = 1, 2, … ,𝑁𝑁𝑏𝑏(𝜀𝜀) and 𝑖𝑖 ≠ 𝑗𝑗, and 
𝑁𝑁𝐸𝐸  contains the total edges in the network. 
 Since 𝐼𝐼𝐷𝐷(𝜀𝜀) is computing in the range 𝜀𝜀 = [1,∆], where ∆ is the diameter of the network plus one, the output is a 
dispersion 𝜀𝜀 vs 𝐼𝐼𝐷𝐷(𝜀𝜀) that can be stored as a vector containing an entropy series. 
 
4.2. Bidirectional Long Short-Term Memory for complex network classification 
 A recent architecture called De-bLSTM, which uses Deng entropy and bLSTM, is used for complex network 
classification. Input sequences are obtained from the input sequence layer, which includes the Deng entropy of nodes and 
edges. This layer normalizes each sequence, which is used as the input to the bLSTM layer with 350 hidden units. An 
entirely connected layer follows the bLSTM, and the softmax layer ensures that the class probabilities add up to one. 
Figure 1 depicts the training and testing process for the bLSTM architecture. 
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Fig. 1: The training and testing process of De-bLSTM 

 The experiments were carried out with the use of MATLAB R2023a on a CPU with Intel Core i9 12900KF, 128 
GB RAM, and two GPU GeForce RTX 4090 with 24 GB RAM each. 
 
 5. Experiments 
 Benchmark datasets for complex networks were used to perform experiments that labeled each network in the 
dataset. A bLSTM network was tuned for each dataset, but the architecture is identical for all bLSTM. Table 1 shows how 
to classify synthetic complex networks by identifying the model used to generate them. The text mentions four models of 
networks: Barabasi-Albert (BA) [27] for self-similar networks, Song, Halvin, and Makse (SHM) [33] for fractals, Watts 
and Strogatz (WS) [26] for networks that have the small-world property, and (u,v)-flowers (UVF) [34] for scale-free 
deterministic networks.  
 The experiments were conducted using 10-fold cross-validation, and the performance was averaged across the 

10-fold. Due to the combination of real-world and synthetic datasets, which results in unbalanced classes, the reported 
performance measures include Matthew's correlation coefficient (MCC) and the Area Under the Receiver Operating 
Characteristics Curve (AUC), in addition to accuracy (ACC). 

 
Table 1: Features of synthetic networks are grouped by the network. The average number of Edges and Nodes is presented in 

the respective columns. 

Dataset Model # Complex Networks Edges Nodes 
BA Barabasi-Albert[27] 255 12,790 3,400 
SHM Song, Halvin and Makse [33] 218 54,023 2,568.8 
UVF (u,v)-flower [34] 255 3,093.8 2,678.4 
WS Watts and Strogatz [26] 216 18,750 3,125 

 
5.1. Real and Synthetic networks 
 Our experiments aimed to categorize real networks in various domains, including the brain, food, infrastructural, 
Cheminformatics,   PPI, and Social sectors. We classified a given network according to its corresponding ground truth 
domain. Then, the synthetic networks were categorized based on the true model that created them. Next, the real-world 
and synthetic networks were combined into a dataset, and classification was performed to determine their respective 
domains or models. No data augmentation was applied during these experiments. Table 2 summarises these experiments 
AUC, MCC, and ACC using De-bLSTM and classification applying the AdaBoosty and random tree algorithm (De-
AdaBoost), which performed the best among many other algorithms. We have also studied whether the bLSTM algorithm 
performs the best on the Deng entropy-based embedding or any other advanced machine learning algorithm that could 
achieve such high performance using this network representation.  
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Table 2: ACC, UAC, and MCC scores of the De-bLSTM and De-AaBoost algorithms are compared in classifying real-world, 
synthetic, and combined datasets. Standard deviation values are also included in parentheses. 

 
Algorithm 

Real-world 
(6 classes) 

Synthetic 
(4 Classes) 

Real-world and 
Synthetic 

(10 classes) 
AUC MCC ACC AUC MCC ACC AUC MCC ACC 

De-bLSTM 0.99 
(0.01) 

0.95 
(0.04) 

97.24 
(2.50) 

1.00 
(0.00) 

1.00 
(0.00) 

100 
(0.00) 

0.99 
(0.01) 

0.98 
(0.01) 

97.07 
(2.09) 

De-AdaBoost 0.98 
(0.01) 

0.83 
(0.06) 

91.55 
(3.34) 

1.00 
(0.00) 

0.99 
(0.01) 

97.73 
(1.86) 

0.99 
(0.00) 

0.84 
(0.05) 

99.77 
(1.39) 

 
 As shown in Table 2, although the De-AdaBoost methods demonstrate remarkable performance, the De-bLSTM 
outperforms in all classification tasks. When unbalanced, the De-bLSTM method achieves high accuracy, such as in a 
real-world dataset. When the synthetic and real-world datasets are brought together, something similar happens. 
 
6. Conclusion 
 This study proposes a new method for classifying complex networks using the entropy of nodes and edges in a 
network called DE-bLSTM. The approach combines two concepts, namely Deng entropy and bLSTM networks, to achieve 
this goal. Additionally, the De-bLSTM approach was tested on both synthetic and real-world complex networks and 
proved effective. The De-bLSTM demonstrated high accuracy in classifying different networks belonging to various 
domains. Finally, a statistical test was performed on 10-fold cross-validation results to determine if there was a significant 
difference between our approach and the best GNN for a given dataset. 
 The De-bLSTM method has shown remarkable accuracy in classifying problems that involve two or more classes. 
Therefore, De-bLSTM can be utilized in domains that possess these features. However, one limitation of De-bLSTM is 
that it does not take into account the labels of the nodes or edges, which could potentially enhance the classification 
performance. Ongoing research aims to extend the algorithm by including these labels in the data structure to train the 
bLSTM. Additionally, classifying nodes and dynamic complex networks will be a future extension of De-bLSTM. 
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