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Abstract - Large Vision Models (LVMs) have shown impressive skills in understanding and generating image descriptions. However, 
to further improve the decision-making abilities of self-driving cars and enable truly autonomous navigation, it is important to augment 
these models with reasoning and distance measurement capabilities. By integrating computer vision techniques that can accurately 
estimate distances to various objects from visual cues alone, LVMs handling perceptual inputs for self-driving cars would be able to 
provide more precise, detailed, and contextually relevant descriptions of the driving environment. This would allow the vehicle's decision-
making system to make better-informed choices and efficiently navigate complex real-world scenarios. Descriptions include estimated 
distances between vehicles and objects like cars, pedestrians, traffic signs, and lane markings. Rather than just describing what an image 
shows, the LVM could depict the scene with numerical distance values between the key objects. 
With enhanced reasoning and metric spatial awareness from estimated distances, LVMs processing self-driving cars' images would 
support better-informed navigation and manoeuvre choices in diverse conditions. The vehicle would have a more quantitative 
understanding of its surroundings to assist autonomous decision-making. 
By applying this augmented perception, our assisted driving system may be able to improve road safety. It can gauge distances accurately 
in real time using camera inputs alone. This allows the system to make informed decisions regarding safe following distances and provide 
alerts to the driver. Our enhanced perception module has the potential to reduce accidents by helping drivers maintain a safer distance 
from vehicles ahead. Our assisted driving system could decrease collisions by monitoring the road ahead and advising the driver on safe 
distances. 
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1. Introduction 

 The integration of Large Vision Models (LVMs) with advanced computer vision techniques has proven its advance in 
natural language processing, particularly in tasks involving image understanding and the generation of descriptions in 
images. However, fully autonomous self-driving vehicles will require further enhancements to these models to achieve 
human-level reasoning and spatial awareness capabilities for safe navigation in complex dynamic environments. 

While LVMs have the advantage of processing visual data and describing scenes effectively, they cannot currently 
accurately estimate distances and spatial relationships between objects. This type of metric understanding is crucial for 
autonomous vehicles as it allows them to navigate roadways precisely while avoiding collisions. Being able to reason about 
distances to surrounding vehicles, pedestrians, traffic signs, etc., is critical for decision-making regarding speed and 
navigation. 

By augmenting LVMs with computer vision techniques that can measure distances, these models gain a numerical 
understanding of the environment beyond descriptive words. They can provide image descriptions enriched with estimated 
metrics, such as "a car is 5 meters ahead in the left lane." This added spatial context grants LVMs the human-level situational 
awareness needed for truly autonomous driving. 

With an enhanced ability to incorporate reasoning about distances and spatial relationships, self-driving vehicles can 
operate with greater confidence, precision, and safety. Accurate distance perception allows for better trajectory planning and 
predictable actions that avoid unsafe situations. It also enables compliance with traffic laws, such as maintaining safe 
following distances. 
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While integrating these new capabilities into LVMs presents technical challenges, the potential benefits are 
significant. Combining the descriptive power of LVMs with advanced computer vision techniques may bring truly 
driverless vehicles closer to reality. This paper explores the implications of augmenting LVMs with reasoning and 
distance measurement capabilities for self-driving cars. It discusses the potential benefits of such enhancements in 
improving navigation efficiency, enhancing safety measures, and advancing the overall autonomy of self-driving 
vehicles. Furthermore, it addresses the challenges of integrating these capabilities into LVMs and proposes avenues for 
future research in this domain. 

 
2. Related work 

 Distance measurement is crucial to self-driving car technology, enabling obstacle avoidance and navigation. Various 
techniques have been explored, including stereo vision, which involves capturing images from two cameras and calculating 
the distance based on the disparity between the object's position in the two images [1][2]. One recent approach utilizes a pair 
of cameras to capture stereo images. It calculates the object's distance based on the disparity between its position in the left 
and right camera images. Image processing techniques, such as downscaling the resolution and converting to grayscale, are 
employed to improve computational speed. The distance calculation considers factors like pixel coordinates, horizontal angle 
of view, and the distance between the cameras [1][3]. Experimental results demonstrate high distance measurement accuracy 
up to 20 meters, with an average error of 2.13. The method suits real-time computing systems and can determine safe driving 
distances between obstacles. However, limitations exist, such as decreased accuracy beyond 160 meters due to image 
compression and pixel-based measurements [1][4]. Other researchers have explored deep-learning techniques for distance 
estimation from stereo images. Smolyanskiy et al. [5] proposed a deep convolutional neural network architecture for depth 
estimation from stereo images, achieving state-of-the-art performance on benchmark datasets. Huang et al. [6] developed a 
deep learning-based monocular depth estimation method, which could be extended to stereo-vision systems. Overall, stereo 
vision and image processing techniques, combined with advanced deep learning approaches, show promise for accurate and 
efficient distance measurement in self-driving cars, contributing to the development of autonomous vehicle technology. 

 
The proposed stereo vision system has several advantages over other distance measurement techniques for autonomous 

vehicles. Compared to lidar-based methods, stereo vision is significantly cheaper to implement as it only requires two 
cameras rather than expensive rotating lidar sensors [7]. It also provides a dense depth map of the entire field of view rather 
than sparse point measurements from lidar [8]. While monocular vision cannot directly measure distances, the additional 
camera in a stereo setup enables direct depth computation through triangulation [9]. This makes stereo vision more robust 
and accurate than monocular approaches [7]. Some challenges of stereo vision include the need for camera calibration and 
matching features between left and right images. However, the system presented in the paper addresses these challenges 
effectively to achieve accurate distance measurements in real-time. With continued improvements, stereo vision holds great 
potential for enabling safety-critical applications in autonomous driving, such as adaptive cruise control [10]. 

 
Real-time object detection and distance measurement are crucial components in autonomous driving systems. The 

importance of virtual environments in autonomous vehicle development is highlighted, as they provide a safe and cost-
effective testing platform [11][12]. Based on Unreal Engine, the CARLA (Car Learning to Act) simulator is one such virtual 
environment that offers various simulated sensors, including RGB-D cameras, segmentation images, and LiDAR [11][13]. 
An improved version of the YOLO-V5 neural network architecture is proposed for object detection, called YOLO-V5-Ghost 
[11]. This improvement involves replacing the BottleneckCSP module with a Ghost Bottleneck module, which utilizes Ghost 
modules instead of conventional convolutions [11][14]. The Ghost module is a lightweight operation that reduces 
computational complexity while maintaining accuracy [11][4]. The performance of YOLO-V5-Ghost is evaluated and 
compared with the original YOLO-V5s network. 

The results show that YOLO-V5-Ghost achieves a similar mean Average Precision (mAP) to YOLO-V5s, but with a 
significantly improved detection speed. The detection speed is crucial for real-time applications in autonomous driving 
systems. For distance measurement, the monocular camera in the CARLA environment is utilized, and a function curve is 
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developed based on the ratio of the target frame's y-axis in the image and the corresponding distance. Analyzing this curve, 
a distance formula for each vehicle type is derived and incorporated into the YOLO-V5-Ghost detection program. The 
distance measurement method is tested on a verification set, and the average error compared to the actual distance is reported 
[11]. The proposed system contributes to the field of autonomous driving by offering an improved object detection network 
and a distance measurement method tailored for virtual environments. The real-time performance and accurate distance 
estimation capabilities can be beneficial for testing and validating autonomous driving algorithms in simulated scenarios. In 
addition to the work by Wu et al. [11], other researchers have also explored object detection and distance estimation 
techniques for autonomous driving applications. Aziz et al. [13] comprehensively review deep learning-based architectures, 
strategies, applications, and current trends in generic object detection. Furthermore, Han et al. [14] introduced the GhostNet 
architecture, which utilizes Ghost modules for efficient computation, similar to the approach used in the YOLO-V5-Ghost 
network. 

 
Vehicle detection is an important autonomous driving task requiring high accuracy and real-time speed [15]. Deep 

learning methods like YOLOv3 achieve high accuracy but are too computationally expensive to deploy on embedded systems 
in vehicles [15]. To address this, Liu and Zhang [16] propose a lightweight YOLO network combining YOLOv3 and 
Shufflenet for real-time vehicle detection on embedded platforms. They also present a fusion method for vehicle ranging 
using cameras with different focal lengths. Ranging based on monocular vision is challenging due to a lack of ground truth 
object sizes [15]. However, small image size makes license plate detection unreliable at long ranges. To overcome this, their 
method simultaneously detects vehicles and license plates using cameras with long and short focal lengths. It matches 
detected vehicles across the two views to obtain width from license plates detectable in the long-focal image. Experiments 
show this fusion approach improves ranging accuracy and range compared to single-camera methods. The lightweight YOLO 
network combined with focal length fusion ranging enables real-time vehicle perception on embedded hardware suitable for 
autonomous vehicles. 

 
The paper estimates the distance to objects, specifically vehicles, using a YOLOv3 deep-learning model for object 

detection. The authors developed a custom model trained on several datasets containing ten classes relevant to traffic scenes 
[17]. For object detection, Convolutional Neural Networks (CNNs) have shown state-of-the-art performance on tasks such 
as image classification and object detection [18]. YOLOv3 is a CNN-based object detection model that achieves real-time 
speeds while maintaining high accuracy [17][19]. For distance estimation, the number of pixels corresponding to the detected 
vehicle width in the bounding box is used [17]. The concept of using pixels within bounding boxes for distance estimation 
has also been explored in previous works [20]. 

The pixel width is calibrated against known distances to convert pixels to meters. Distance is then estimated by applying 
the inverse rule of proportions to the pixel width measured [17]. Other techniques for estimating depth from a single image 
include monocular depth prediction using CNNs trained on large datasets containing ground truth depth information [21]. 
Testing was conducted by taking photos of vehicles from 2-15 meters and comparing estimated vs actual distances. The 
inverse pixel technique achieved average errors within 0.6 meters up to 8 meters distance. Error increased with distance but 
was reduced by half using edge/HSV correction, with a maximum error of around two meters at 15 meters distance. 
Additional testing with six vehicles found uncorrected errors exceeded one meter past 8 meters distance. Correction again 
reduced errors, keeping them below 2 meters even at 15 meters. HSV correction outperformed edge detection by not 
including background pixels. 

The methodology demonstrated real-time capable vehicle distance estimation from monocular images, achieving sub-
meter accuracy typically required for driver assistance systems. Parallelization ensured 30+ FPS, which is necessary for 
safety-critical vehicle applications. 

 
 
 

3. Methodology 
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This research aimed to enhance the understanding of autonomous vehicle scenes by generating natural language 
descriptions of the driving environment using computer vision and natural language processing techniques. This focused 
measuring object distances to provide an important spatial context for planning and decision-making. 

 
3.1. Data Collection 

A test vehicle was equipped with an onboard camera mounted at eye level facing forward through the windshield 
to collect relevant data. A Sony 64MP Quad Camera was used, capable of 1080p video at 30 frames per second to 
capture high-quality footage. Routes were selected within an urban area containing common objects like other vehicles, 
pedestrians, road signs, and traffic lights. Routes included roads with intersections, pedestrian crosswalks, highways, 
construction zones, and more to cover a variety of scenarios. The vehicle was driven along these roads under varying 
typical driving conditions, including changes in lighting, weather, and traffic levels. Over multiple drives spanning two 
hours, high-definition video recordings were captured, simulating realistic autonomous scenes. The videos were initially 
pre-processed by splitting the footage into individual frames using OpenCV. We analyzed the footage to reduce 
redundancy between frames while maintaining enough data. We extracted seven frames per second for the rest of the 
processing, resulting in a total dataset of around 15,648 images. These images were then resized to 1080x1080 pixels to 
match the input resolution of the YOLO-V5 object detection model without losing semantic meaning. 

 

 
Fig. 1: Sample Data 

 
3.2. Object Detection 

YOLO-V5 was used to perform object detection on each frame to identify all detectable objects in the scenes. 
YOLO-V5 was particularly suitable because it is one of the fastest models for real-time object detection with high 
accuracy. It is crucial for autonomous driving applications that require rapid scene understanding. The model chosen 
was YOLO-V5n6, which provides an ideal balance of speed and accuracy without compromising too much on object 
detection capability compared to heavier models. Applying the YOLO-V5 model to each frame in the test set produced 
bounding boxes, class labels, and confidence scores for multiple detections per frame. 
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Fig. 2: Sample Image with Object Detection Results. 

 
 

3.3.  Distance Estimation 
 Two methodologies were explored to achieve accurate depth information: monocular depth estimation and triangle 

similarity utilizing object sizes. Initially, we employed the vinvino02/glpn-nyu model for monocular depth estimation. It 
estimates the distance of objects in a scene from a single-camera viewpoint. While this approach yielded reasonable results 
for objects close, it encountered challenges in accurately estimating distances for objects at greater distances, typically 
beyond 2 or 3 meters from the camera. Consequently, although proficient at estimating distances for nearby objects, the 
monocular depth estimation model exhibited limitations in accurately assessing longer distances.  

 

 
Fig. 3:  Sample Image for Depth Estimation Using Monocular Depth Estimation. 

 
 we supplemented our depth estimation strategy with triangle similarity calculations based on average object dimensions. 

This alternative method proved more reliable, providing accurate distance measurements for objects near and far from the 
camera's perspective. By leveraging the inherent geometric relationships between object sizes and their corresponding 
distances, the triangle similarity technique enhanced the precision of our depth estimation process, thereby improving the 
overall quality of scene analysis in autonomous driving scenarios. 

  
The calculation process involves several key steps. Firstly, we measure the width of detected objects in the captured 

images, expressed in pixels. This width is obtained through object detection algorithms such as YOLO-V5, which provides 
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bounding box dimensions around detected objects. Subsequently, we determine the real-world width of these objects in 
physical units, such as centimeters. This step may necessitate pre-calibration of the system or utilizing known object 
dimensions for accurate measurement. Next, the focal length of the camera lens is determined. This critical parameter 
essential for accurate distance calculation and can be established through camera calibration techniques. These 
involve capturing images of known objects at various distances and utilizing geometric principles to compute the focal 
The triangle similarity principle is applied once the object width in pixels, real object width, and focal length are 
determined. This principle states that the ratio of corresponding sides remains constant for similar triangles formed by 
the object, the camera lens, and its projection onto the image plane, using equation: 
 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑥𝑥 =
Real Object width × Focal Length

Object width in pixels
 

 
(1) 

 
We calculate the real distance between the camera and the object in physical units (meters), which enables us to accurately 
analyze the scene in autonomous driving scenarios over different distances. 
 

 
Fig. 4:  Sample Image for Distance Estimation Using Triangle Similarity. 

 
3.4. Advanced Scene Description 

 In this phase of our methodology, we integrate the output of our triangle similarity calculations and the coordinates 
obtained from YOLO-V5 object detection into LLAVA, a sophisticated natural language processing model. By combining 
these data sources, we enhance the scene description process, providing detailed insights into the spatial positioning and the 
accurate distance measurements of detected objects within the scene. The coordinates obtained from YOLO-V5 object 
detection allow us to precisely determine the location of each detected object in the image. These coordinates, coupled with 
the distances calculated through triangle similarity, form the basis of our scene description process. LLAVA utilizes this 
combined data to generate textual descriptions that identify the objects present in the scene and provide precise distance 
measurements for each object, offering a comprehensive understanding of the spatial relationships within the environ 
4. Results 
 
4.1 Distance Calculation 

 A controlled experiment was conducted to evaluate the accuracy of the triangle similarity method for distance 
calculation. In this experiment, six objects represent known categories at measured distances from the camera. Then, the 
real distances between the camera and these objects were compared to those calculated using the triangle similarity. This 
rigorous evaluation aims to verify the reliability and suitability of the triangle similarity approach to accurately estimate 
distances in various scenarios encountered in autonomous driving applications. 
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Table 1: Distance Estimation. 
 

Test  Label Real (m) Est. (m) Width (m) Error (%) 
1 Car 2.4 2.4 1.6 0 
2 Car 4.6 4.46 1.6 0.0326 
3 Car 4.9 4.67 1.4 0.05 
4 Car 3 2.31 1.3 0.23 
5 Person 4.3 4.01 0.48 0.0465 
6 Person 3.1 2.47 0.5 0.2 

 
These results compare the real distances of objects to the distances calculated using the triangle similarity method. 

The error percentage indicates the deviation between the calculated and real distances, providing insights into the 
accuracy of the distance estimation process. 

 

 
Fig. 5:  Real vs Calculated Distances. 

 
 

In addition to numerical representation, the comparison between real and calculated distances is visually depicted 
in the scatter plot below. The blue line represents the real distances of objects, while the red line corresponds to the 
calculated distances using the triangle similarity method. Each point on the plot represents a test scenario, with the x-
axis indicating the test number and the y-axis representing the distance in meters. The plot provides a clear visual 
representation of the agreement between the real and calculated distances, allowing for a quick assessment of the 
accuracy of our distance estimation approach. 

In the following examples, we provide scene descriptions before and after LLAVA integration, both of which 
correspond to the captured image scene shown below. These descriptions illustrate the enhancement achieved through 
LLAVA integration, particularly regarding object identification, spatial awareness, and distance measurement accuracy. 
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Fig. 6:  Captured Scene for LLAVA Integration: Enhancing Autonomous Driving Perception. 

 
4.2 Before LLAVA integration. 

 
 The initial scene description provides an overview of the captured image from the perspective of a vehicle's dashboard. 

It identifies various elements, such as vehicles, buildings, and road features, but lacks detailed spatial information and 
distance measurements. 

 

 
Fig. 7:  Example Before LLAVA Integration. 

 
4.3 After LLAVA integration 

 
 Following LLAVA integration, the scene description becomes more comprehensive and informative. LLAVA 

identifies objects and provides accurate distance measurements for each object detected. This additional information 
enhances the understanding of the scene, allowing for precise localization and spatial awareness. 
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Fig. 8:  Example After LLAVA Integration. 

 
4. Conclusion 

Conclusions This study presents a comprehensive approach to enhance autonomous driving scene description by 
integrating the LLAVA natural language processing model with distance estimation. With the addition of LLAVA, we 
achieved significant improvements in visual and spatial awareness, ultimately increasing the capabilities of autonomous 
driving systems. 

Our results demonstrate the effectiveness of combining computer vision techniques with natural language processing to 
provide detailed and accurate descriptions of driving conditions. By incorporating LLAVA into our approach, we were able 
to create high-quality, human-readable annotations that accurately measured the distance of detected objects. 

The integration with LLAVA enhances comprehension of the scene and facilitates more informed decision-making for 
autonomous vehicles. These advances are critical to improving the safety and efficiency of automated driving and ultimately 
contribute to safer roads for all and increased mobility. 

Going forward, further research will focus on optimizing LLAVA integration for real-time applications to improve its 
performance in different driving conditions. By continuing to promote the integration of natural language processing into 
autonomous vehicle systems, we can pave the way for sophisticated and reliable autonomous vehicles, ultimately changing 
the future of transportation. 
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