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Abstract - In this work we study the applicability of Kalman filters in stock prices prediction using the actual observations of stock 

prices. We investigate the behavior of two state space models where the acceleration or the velocity of the stock price is considered as a 

zero mean white noise sequence, due to the high fluctuation of the stock market. We propose time varying, time invariant, steady state 

and Finite Impulse Response form of steady state Kalman filters for each model. We deal with short term prediction, namely daily 

prediction. The proposed Kalman filters are implemented using historical data of stock price. It was found that the proposed Kalman 

filters produce reliable predictions. The percent mean absolute error may vary by model and filter; some filters give satisfactory results 

where the percent mean absolute error in stock price prediction is less than 2%. Furthermore, some filters present relative error less 

than 1% for 35%-50% of predictions. Finally, the average percent profit can reach 3.5% using the proposed Kalman filters.  
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1. Introduction 
Forecasting deals with the prediction of future values of variables of interest. In the case where the measurements of 

these variables are collected over time (at regular time intervals), the problem is referred to as time-series forecasting. 

Forecasting has been applied in a wide range of applications: Operational Research [1], business and economic forecasting 

[2], supply-chain inventory management [3], economics and finance [4].  

The economic and financial time series have attracted attention of scientists, researchers and scholars over the past 

decades. The analysis and prediction of the change of financial time series can be used in trusty management and decision 

making for relevant public services and investors. The stock is a financial time series of enormous interesting mainly for 

investors. The prediction of stock price is of great importance due to the randomness and uncertainty of the stock market.  

The financial markets consider the stock price forecast problem from two points of view: the fundamental analysis, 

which takes into account the underlying factors that affect the actual business and the future prospects of the companies 

and the technical analysis, which takes into account the stock price movement.  

The stock market includes individuals and companies participating in a network of buying and selling stocks. The 

buying and selling of stocks have high risk, and hence predictions are needed to avoid losses and make profits. Time series 

analysis is the fundamental method to provide the forecasting.  

A common and simple method is to use a Moving Average (MA) model [5]. A popular method implemented in time 

series analysis is the Autoregressive Integrated Moving Average (ARIMA) model [6]. Various ARIMA models have been 

used depend on the stock market [6]. Variations of the ARIMA model use clustering time series [7], fuzzy neural networks 

[8], support vector model [9], ARIMA and Holt Winter time series algorithms [10]. 

State estimation uses observable data to estimate the unobservable system states. A popular algorithm for this purpose 

is the well-known Kalman filter [11], [12]. Kalman filter has been used in the prediction of stock price [13], [14].  

The novelty of this work concerns: (a) the description of two observable state space models, where the stock price is 

viewed as a maneuvering system, (b) the design of time varying Kalman filters, where the noise parameters are time 

varying, (c) the design of time invariant Kalman filters and prediction steady state Kalman filters, where the prediction 

error covariance is a priori known, (d) the design of the Finite Impulse Response (FIR) form of the prediction steady state 

Kalman filters, which do not require all the previous observations.  
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2. State space models 
In this section we present two state space models, where the stock price is viewed as a maneuvering system due to 

the high fluctuation of the stock market.  

 
2.1. Model A – random stock price acceleration  

The state consists from two (nA = 2) elements: the stock price p(k) and the rate r(k) of change of the stock price: 

x(k) = [
p(k)
r(k)

]. The measurement has one element (mA = 1), the stock price. Due to the high fluctuation of the stock 

market, the acceleration a(k) of the stock price can be considered as a zero mean white noise sequence [13], [14]. Then 

p(k + 1) = p(k) + r(k) ∙ T +
1

2
∙ a(k) ∙ T2 

r(k + 1) = r(k) + a(k) ∙ T 

where T is the sampling period. We adopt the value T = 1 proposed in [14].  

The linear state space model becomes: 

x(k + 1) = F ∙ x(k) + w(k) (1) 

z(k) = H ∙ x(k) + v(k) (2) 

For the dynamic part of the model we have: F = [
1 T
0 1

] , H = [1 0], w(k) = Γ ∙ a(k), Γ = [
1

2
∙ T2

T
]. It is worth to note that 

the model is observable, i.e. all the states can be uniquely determining from the observations. In fact the (mA ∙ nA)xnA 

observability matrix OM = [
1 0
1 T

] satisfies the observability criterion: rank(OM) = nA, since rank(OM) = 2. 

For the statistical part of the model we have: The acceleration a(k) of the stock price can be regarded as a zero mean 

Gaussian noise process with variance qa(k) > 0. Then the state noise w(k) is a zero mean Gaussian process with known 

covariance Q(k) = Γ ∙ qa(k) ∙ ΓT = qa(k) ∙ [
1

4
∙ T4 1

2
∙T3

1
2

∙T3 T2 ], where ΓT denotes the transpose of Γ. The measurement noise 

v(k) is a zero mean Gaussian noise process with covariance R(k). The initial state x(0) is a Gaussian random variable with 

mean x0 and covariance P0. The model A can be time invariant when the state noise covariance and the measurement noise 

covariance are constant: Q(k) = Q (with qa(k) = qa) and R(k) = R. 

 
2.2. Model B – random stock price velocity  

The state consists from one (nB = 1) element: the stock price p(k). The measurement has one element (mB = 1), 

the stock price. The velocity υ(k) of the stock price can be considered as a zero mean white noise sequence. Then 

p(k + 1) = p(k) + υ(k) ∙ T 

where T is the sampling period. We adopt the value T = 1 proposed in [14].  

The linear state space model becomes: 

x(k + 1) = F ∙ x(k) + w(k) (3) 

z(k) = H ∙ x(k) + v(k) (4) 

For the dynamic part of the model we have: F = 1, H = 1, w(k) = Γ ∙ υ(k). It is worth to note that the model is observable, 

i.e. all the states can be uniquely determining from the observations. In fact the (mB ∙ nB)xnB observability matrix OM =

[
1
1

]satisfies the observability criterion: rank(OM) = nB, since rank(OM) = 1. 

For the statistical part of the model we have: The velocity υ (k) of the stock price can be regarded as a zero mean Gaussian 

noise process with variance qυ(k) > 0. Then w(k) is a zero mean Gaussian process with known covariance Q(k) = T ∙
qυ(k) ∙ TT = qυ(k) ∙ T2. v(k) is a zero mean Gaussian noise process with covariance R(k). The initial state x(0) is a 

Gaussian random variable with mean x0 and covariance P0. The model B can be time invariant when the state noise 

covariance and the measurement noise covariance are constant: Q(k) = Q (with qυ(k) = qυ) and R(k) = R. 
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3. Kalman filters 
Both the models described above, can be considered for short term prediction; in fact by setting T = 1, as proposed 

in [14], we are able to use observations collecting at the end of every day (closing prices) in order to predict the stock price 

of the next day. Kalman filter [11], [12] computes the state estimation x(k|k) and the estimation error covariance P(k|k) as 

well as the state prediction x(k + 1|k) and the prediction error covariance P(k + 1|k), using the Kalman filter gain K(k).  

 
3.1. Time Varying Kalman Filters  

In both models, the transition matrix F and the output matrix H are constant, but the state noise covariance Q(k) and 

the measurement noise covariance R(k) are time varying. Then, the time varying Kalman filter algorithm becomes: 
Time Varying Kalman Filter (TVKF) 

K(k) = P(k|k − 1) ∙ HT(k) ∙ [H(k) ∙ P(k|k − 1) ∙ HT(k) + R(k)]−1 
x(k|k) = [I − K(k) ∙ H(k)] ∙ x(k|k − 1) + K(k) ∙ z(k) 

P(k|k) = [I − K(k) ∙ H(k)] ∙ P(k|k − 1) 

x(k + 1|k) = F(k) ∙ x(k|k) 

P(k + 1|k) = Q(k) + F(k) ∙ P(k|k) ∙ FT(k) 

for k = 0,1, … , with initial conditions x(0|−1) = x0, P(0|−1) = P0 

Model A. The measurement noise covariance is time varying: in fact R(k) is the variance of N last observations 

(prices). A reasonable choice is to set N = 5 in order to take into account the last week period observations. If less than N 

observations are available, then R(k) is the variance of the available observations. The state noise covariance is time 

varying: Q(k) depends on qa(k), which is the acceleration variance of N last rate differences (successive rate differences). 

A reasonable choice is to set N = 5  in order to take into account the last week period observations. If less than N 

observations are available, then Q(k) takes into account the available observations.  

Model B. The measurement noise covariance is time varying: in fact R(k) is the variance of N last observations 

(prices). A reasonable choice is to set N = 5 in order to take into account the last week period observations. If less than N 

observations are available, then R(k) is the variance of the available observations. The state noise covariance is time 

varying: Q(k) depends on qυ(k), which is the velocity variance of N last rate differences (successive rate differences). A 

reasonable choice is to set N = 5  in order to take into account the last week period observations. If less than N 

observations are available, then Q(k) takes into account the available observations.  

 
3.2. Time Invariant Kalman Filters  

In both models, the transition matrix F and the output matrix H are constant. In addition, the acceleration variance qa 

of model A and the velocity variance qυ of model B are constant. Then, the state and measurement noise covariances are 

time invariant: Q(k) = Q and R(k) = R.Then, the time invariant Kalman filter algorithm becomes: 
Time Invariant Kalman Filter (TIKF) 

K(k) = P(k|k − 1) ∙ HT ∙ [H ∙ P(k|k − 1) ∙ HT + R]−1 
x(k|k) = [I − K(k) ∙ H] ∙ x(k|k − 1) + K(k) ∙ z(k) 

P(k|k) = [I − K(k) ∙ H] ∙ P(k|k − 1) 

x(k + 1|k) = F ∙ x(k|k) 

P(k + 1|k) = Q + F ∙ P(k|k) ∙ FT 

for k = 0,1, … , with initial conditions x(0|−1) = x0, P(0|−1) = P0  

Model A. The constant state noise covariance Q can be determined setting T = 1, as proposed in [14] and setting the 

acceleration variance qa as the mean of the acceleration variance of a previous period (one year, for example). We are able 

to adopt the value qa = 1 proposed in [14], or setting qa = 0.1. Then Q = qa ∙ [
1

4
∙ T4 1

2
∙T3

1
2

∙T3 T2 ] = qa ∙ [
1

4
1
2

1
2

1
]. The constant 

measurement noise covariance R can be determined as the mean of the stock price variance of a previous period (one year, 

for example). We are able to adopt the value R = 1 proposed in [14], or setting R = 0.1.  
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Model B. The constant state noise covariance Q can be determined setting T = 1, as proposed in [14] and setting the 

velocity variance qυ as the mean of the velocity variance of a previous period (one year, for example). We are able to 

adopt the value qυ = 1 proposed in [14], or setting qυ = 0.1. Then Q = qυ ∙ T2 = qυ. The constant measurement noise 

covariance R can be determined as the mean of the stock price variance of a previous period (one year, for example). We 

are able to adopt the value R = 1 proposed in [14], or setting R = 0.1.  

 
3.3. Prediction Steady State Kalman Filters 

We consider the time invariant models and the steady state case where the estimation error covariance, the prediction 

error covariance and the Kalman filter gain remain constant. In fact, the steady state prediction error covariance Pp satisfies 

the algebraic Riccati Equation: 

Pp = Q + F ∙ Pp ∙ FT − F ∙ Pp ∙ HT ∙ [H ∙ Pp ∙ HT + R]
−1

∙ H ∙ Pp ∙ FT (5) 

Then the steady state Kalman filter gain K is: 

K = Pp ∙ HT ∙ [H ∙ Pp ∙ HT + R]
−1

 (6) 

Combining the time invariant Kalman filter equations and assuming the steady state Kalman filter gain K, the 

Prediction Steady State Kalman Filter is: 
Prediction Steady State Kalman Filter (PSSKF) 

x(k + 1|k) = Cx ∙ x(k|k − 1) + Cz ∙ z(k) 

for k = 0,1, … , with initial condition x(0|−1) = x0  
where Cx = F ∙ [I − K ∙ H], Cz = F ∙ K 

It is worth to note that the coefficients Cx, Cz are a-priori computed, i.e. before the filter implementation, by first off-

line solving the corresponding algebraic Riccati Equation [12]. It is also important to note that the state prediction 

computation requires the current observation and the previous state prediction. 

Model A. In the case where T = 1, qa = 1, R = 1 as proposed in [14], the steady state prediction error covariance is: 

Pp = [
3 2
2 2

]. Then, the steady state Kalman filter gain K is: K = Pp ∙ HT ∙ [H ∙ Pp ∙ HT + R]
−1

= [
0.75
0.50

]. The prediction 

steady state Kalman filter coefficients are: Cx = F ∙ [I − K ∙ H] = [
−0.25 1
−0.50 1

] , Cz = F ∙ K = [
1.25
0.50

] 

Model B. In the case where T = 1, qυ = 1, R = 1 as proposed in [14], the steady state prediction error covariance is: 

Pp =
√5+1

2
. Then, the steady state Kalman filter gain K is: K = Pp ∙ [Pp + 1]

−1
=

√5−1

2
. The prediction steady state Kalman 

filter coefficients are: Cx = [1 − K] =
3−√5

2
= 0.3820, Cz = K =

√5−1

2
= 0.6180. 

It is worth to note that: Pp =
√5+1

2
= 1.6180 = goldensection, Cz =

√5−1

2
= 0.6180 = goldensection − 1, Cx = 1 −

Cz. 

 
3.4. FIR form of Prediction Steady State Kalman Filters 

From the prediction equation of the Prediction Steady State Kalman Filter we get: 

x(1|0) = Cx ∙ x(0|−1) + Cz ∙ z(0) = Cx ∙ x0 + Cz ∙ z(0) 

x(2|1) = Cx ∙ x(1|0) + Cz ∙ z(1) = Cx
2 ∙ x0 + Cx ∙ Cz ∙ z(0) + Cz ∙ z(1) 

… 

x(k + 1|k) = Cx
k+1 ∙ x0 + Cx

k ∙ Cz ∙ z(1) + ⋯ + Cz ∙ z(k) 

It is known [15] that if the spectral radius ρ(M) of a matrix M is less than 1, then the powers of the matrix can be 

expected to converge to zero. Then, there exists a positive integer L, such that ‖ML‖ < ε, where ε is the convergence 

criterion and ‖M‖ denotes the norm-2 of M. Hence, due to computational accuracy, there exists some positive integer L, 

such that:  ML ≠ 0, ML+1 = 0. 

If the coefficient Cx = F ∙ [I − K ∙ H] has this property, then x(L + 1|L) = Cx
L+1 ∙ x0 + Cx

L ∙ Cz ∙ z(1) + ⋯ + Cz ∙ z(L) and 

x(L + 1|L) = Cx
L ∙ Cz ∙ z(1) + ⋯ + Cz ∙ z(L) 



 

 

 

 

 

 

CIST 105-5 

x(L + 2|L + 1) = Cx
L ∙ Cz ∙ z(2) + ⋯ + Cz ∙ z(L + 1) 

… 

x(k + 1|k) = Cx
L ∙ Cz ∙ z(k − L) + ⋯ + Cz ∙ z(k) 

Assuming that z(k) = 0, k < 0, the Finite Impulse Response (FIR) form of the prediction steady state Kalman filter is: 
FIR Prediction Steady State Kalman Filter (FIRPSSKF) 

x(k + 1|k) = ∑ Cx
i ∙ Cz ∙ z(k − i)

L

i=0

 

for k = 1,2, …  

where Cx = F ∙ [I − K ∙ H], Cz = F ∙ K and ‖Cx
L

‖ ≥ ε, ‖Cx
L+1

‖ < ε 

It is worth to note that the computation of the prediction is not done iteratively, since the knowledge of the previous 

estimate is not required; in fact the computation of the prediction requires the knowledge of the last L + 1 observations. It 

is obvious that L depends on the desired convergence criterion ε. A reasonable choice is to set ε = 10−2 since the stock 

prices appear with two decimal places.  

Model A. From the model A parameters we get F = [
1 T
0 1

] , H = [1 0], Q = qa ∙ [
1

4
∙ T4 1

2
∙T3

1
2

∙T3 T2 ] , qa > 0, R > 0. In 

the case where T = 1, qa = 1, R = 1 as proposed in [14], the coefficient Cx = [
−0.25 1
−0.50 1

] has the property ρ(Cx) = 0.5 <

1. Then L = 7 for ε = 10−2. 

Model B. From the model B parameters we get Cx = F ∙ [1 − K ∙ H] = 1 − K = 1 −
Pp

Pp+R
=

R

Pp+R
 

Consider that Pp and R are positive definite, as covariances, without loss of generality. Then 0 < Cx < 1 and ρ(Cx) = Cx. 

Hence, Cx has always the property ρ(Cx) < 1. In the case where T = 1, qυ = 1, R = 1 as proposed in [14], the coefficient 

Cx =
3−√5

2
= 0.3820has the property ρ(Cx) =

3−√5

2
= 0.3820 < 1. Then L = 4 for ε = 10−2. 

Table 1 summarizes the proposed state space models and Kalman filters for stock price. 

 
Table 1: State space models and Kalman filters for stock price prediction. 

model Kalman Filter F H Q R 

model A 

TVKF-A F = [
1 T
0 1

] H = [1 0] Q(k) = qa(k) ∙ [

1

4
∙ T4 1

2
∙T3

1

2
∙T3 T2

] R(k) 

TIKF-A, PSSKF-A, FIRPSSKF-A F = [
1 T
0 1

] H = [1 0] Q = qa ∙ [

1

4
∙ T4 1

2
∙T3

1

2
∙T3 T2

] R 

model B 
TVKF-B F = 1 H = 1 Q(k) = qυ(k) ∙ T2 R(k) 

TIKF-B, PSSKF-B, FIRPSSKF-B F = 1 H = 1 Q = qυ ∙ T2 R 

 

4. Simulation results 
The experimental data used concerns:  

(a) data of the order of one month: N = 27 stock closing price historical data (September 22, 2014 to November 4, 

2014) of the stock Changbaishan taken from [14],  

(b) data of the order of one year: N = 250  stock closing price historical data (January 3, 2023 to December 29, 

2023) of the stock Ford Motor Company (F) taken from [16].  

The stock price observations are: z(0), z(1), … , z(N − 1). The first observation z(0) is used for the initial condition 

x(0|−1) determination. Then, the Kalman filter predictions x(1|0), x(2|1), x(3|2), … , x(N − 1|N − 2) are compared to the 

rest of the observations z(1), … , z(N − 1). 
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All the proposed Kalman filters (time varying, time invariant, prediction steady state and FIR form of prediction 

steady state Kalman filters) were implemented for both models A and B, with sampling period: T = 1. Time varying 

models take into account the last 5 observations in order to determine (a) the time varying measurement noise covariance 

and (b) the time varying state noise covariance, using the acceleration variance of model A and the velocity variance of 

model B. Time invariant models use the constant measurement noise covariance: R = 1 and the constant state noise 

covariance Q, using the acceleration variance qa = 1 of model A and the velocity variance qυ = 1 of model B. The initial 

conditions are x0 = [
z(0)

0
] , P0 = [

1 0
0 1

] for model A and x0 = z(0), P0 = 1 for model B. 

 
4.1. Prediction 

Figure 1 depicts the stock price (observations), as well as the daily stock price prediction using the Prediction Steady 

State Kalman Filter for both models A and B, for month and year data. 

 

month data 

 

year data 

 

Fig. 1: Stock price prediction using PSSKF. 

4.2. Prediction errors 

The following error metrics were calculated for the daily stock price prediction using all the proposed filters: 

Mean Bias Error (MBE) =
1

N
∑ e(k)N

k=1   (7) 

% Mean Absolute Error (%MAE) =
1

N
∑

|e(k)|

z(k)
N
k=1 ∙ 100  (8) 

% Root Mean Squared Error (%RMSE) = √
1

N
∑

e2(k)

z2(k)
N
k=1 ∙ 100  (9) 

where e(k) = x(k + 1|k) − z(k) and N is the number of observations. 

Table 2 presents MBE, %MAE, %RMSE for the daily stock price prediction for month and year data.  

 
Table 2: Prediction errors using TVKF, TIKF, PSSKF, FIRPSSKF. 

Kalman Filter 
month data year data 

MBE %MAE %RMSE MBE %MAE %RMSE 

TVKF-A 0.0503 2.5993 3.3173 0.0115 2.0716 2.8745 

TIKF-A 0.0013 2.0258 2.7839 0.0011 1.9559 2.6884 

PSSKF-A 0.0028 2.0296 2.7878 0.0009 1.9551 2.6879 

FIRPSSKF-A 0.5901 6.1394 12.7158 -0.0354 2.4207 4.3257 

TVKF-B 0.2305 2.3885 3.1308 -0.0077 2.1854 3.0414 

TIKF-B 0.1331 1.8258 2.5269 -0.0038 1.8479 2.4997 

PSSKF-B 0.1331 1.8256 2.5268 -0.0037 1.8475 2.4992 

FIRPSSKF-B -0.3806 3.4005 8.1679 -0.1306 2.2002 3.8019 



 

 

 

 

 

 

CIST 105-7 

 
4.3. Prediction statistics 

Table 3 presents the percent Mean Absolute Error (%MAE) statistics for the daily stock price prediction using all the 

proposed Kalman filters; namely the percent prediction cases with respect to the error ranges, for month and year data. 

 
Table 3: Percent Mean Absolute Error (%MAE) statistics. 

Kalman Filter 
month data year data 

[0-1) [1-2) [2-3) [3-4) >=4 [0-1) [1-2) [2-3) [3-4) >=4 

TVKF-A 30.7692 19.2308 7.6923 15.3846 26.9231 35.7430 24.0964 19.2771 7.6305 13.2530 

TIKF-A 50.0000 11.5385 15.3846 3.8462 19.2308 34.1365 31.7269 14.8594 9.2369 10.0402 

PSSKF-A 50.0000 11.5385 15.3846 3.8462 19.2308 34.1365 31.7269 14.8594 9.2369 10.0402 

FIRPSSKF-A 23.0769 26.9231 11.5385 3.8462 34.6154 33.7349 23.2932 20.8835 8.4337 13.6546 

TVKF-B 23.0769 38.4615 11.5385 15.3846 11.5385 35.7430 21.2851 17.2691 10.4418 15.2610 

TIKF-B 26.9231 50.0000 3.8462 11.5358 7.6923 36.9478 24.8996 21.2851 8.4337 8.4337 

PSSKF-B 26.9231 50.0000 3.8462 11.5358 7.6923 36.9478 24.8996 21.2851 8.4337 8.4337 

FIRPSSKF-B 38.4615 30.7692 15.3846 3.8462 11.5385 29.7189 32.9317 16.4659 8.8353 12.0482 

 
4.4. Profits/Losses 

Table 4 presents the percent profits/losses statistics for the daily stock price prediction using all the proposed Kalman 

filters, for month and year data.  

 
Table 4: Daily percent profits/losses. 

Kalman Filter 
month data year data 

max mean max mean 

TVKF-A 7.4881 0.3023 13.0947 0.0988 

TIKF-A 6.7000 0.0016 13.8379 0.0089 

PSSKF-A 6.7000 0.0210 13.8379 0.0076 

FIRPSSKF-A 49.1530 3.4892 40.4286 -0.2880 

TVKF-B 9.2148 1.4932 15.8240 0.0090 

TIKF-B 8.6432 0.8632 14.5501 0.0111 

PSSKF-B 8.6432 0.8630 14.5501 0.0114 

FIRPSSKF-B 7.7644 -2.2073 13.5991 -1.0233 

 

5. Conclusions 
Kalman filters are applicable in stock prices prediction using the actual observations of stock prices. Two state space 

models are proposed, where the acceleration or the velocity of the stock price is considered as a zero mean white noise 

sequence. The models are fully defined and observable. For each model, the following types of Kalman Filter (KF) are 

derived: time varying KF, time invariant KF, steady state KF, FIR form of steady state KF. The FIR form of the steady 

state KF requires the knowledge only of a well-defined subset of previous time observations to calculate the prediction.  

The proposed Kalman filters are easily programmable and do not require training (as methods using ARIMA models), 

since they do not depend on the type of stock or company. They could be combined with other methods for correcting and 

improving the prediction results.  

The proposed Kalman filters were applied for short term prediction, namely daily prediction. The proposed Kalman 

filters are implemented using historical data of stock price. It was found that the proposed Kalman filters produce reliable 

predictions and have a satisfactory behavior. The percent mean absolute error may vary by model and filter; some Kalman 

filters give satisfactory results where the percent mean absolute error in stock price prediction is less than of 2%. 

Furthermore, some Kalman filters present relative error less than 1% for 35%-50% of predictions. Finally, the average 

percent profit can reach 3.5% using the proposed Kalman filters.  
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A subject of future work may be the very short term prediction, for example prediction per hour with respect to the 

sampling period of observations collection. Another subject of future work may be the long term prediction, for example 

average prediction per one week period (5 days); we propose to process blocks of measurements of time window 

corresponding for example to one week period in order to predict the average of stock price. 

 

Nomenclature list 
F  transition matrix 

H  output matrix 

Pp  steady state prediction error covariance 

Q  state noise covariance 

R  measurement noise covariance 

v  measurement noise 

w  state noise 

x  state 

z  measurement 
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