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Abstract - The rise in cyber-attacks highlights the critical need for advanced network intrusion detection systems. Traditional machine
learning methods often fail to capture the complex patterns inherent in cybersecurity data. Graph Neural Networks (GNNs) [4], capable
of efficiently modeling data as nodes and edges, have shown promise in addressing these challenges. This research proposes a novel 
approach combining Graph Masked Autoencoder (Graph MAE) [2] for self-supervised pretraining and a global attention-based Graph 
Transformer (Graph GPS) [3] for fine-tuning. Utilizing the UNSW-NB15 dataset [1], we sampled 25% of the dataset (approximately 
653,012 network flow records) due to computational restraints. Performance metrics such as Accuracy, Precision, Recall, F1-score, and
Area Under the ROC Curve (AUC) were employed. Results indicate significant performance improvements (Accuracy: 0.95, Precision:
0.58, Recall: 0.94, F1-score: 0.72, AUC: 0.98) compared to a baseline two-layer Graph Convolution Network (GCN) [4] model. The 
study underscores the efficacy of combining self-supervised learning methods and global attention mechanisms in enhancing malicious 
traffic detection.
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1. Introduction
The increasing frequency and sophistication of cyber-attacks demand robust network intrusion detection systems

(NIDS). Traditional machine learning methods, while beneficial, struggle to identify complex patterns inherent in
cybersecurity data. Recently, Graph Neural Networks (GNNs) [4] have emerged as a powerful method due to their capability
of modeling intricate relationships via nodes and edges.

 
2. Methodology

2.1. Data Preparation
The UNSW-NB15 dataset [1] was utilized, containing detailed network flow records. Due to computational

constraints, we randomly sampled 25% of the dataset, amounting to approximately 653,012 network flows. Each flow was
characterized by nodes including source IP, destination IP, and flow duration.

2.2. Model Architecture
Our methodology integrates two advanced models:

 Graph Masked Autoencoder (Graph MAE) [2] for initial self-supervised pretraining.
 Global attention-based Graph Transformer (Graph GPS) [3] for fine-tuning.

2.3. Performance
Evaluation Models were evaluated using Accuracy, Precision, Recall, F1-score, and AUC metrics to quantify

effectiveness.
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3. Results 
Our combined Graph MAE and Graph GPS approach demonstrated superior performance over the baseline GCN model.

Specifically, it achieved:

 Accuracy: 0.95
 Precision: 0.58
 Recall: 0.94
 F1-score: 0.72
 AUC: 0.98

The baseline GCN [4] recorded notably lower performance:

 Accuracy: 0.86
 Precision: 0.24
 Recall: 0.61
 F1-score: 0.35
 AUC: 0.88

Fig. 1: Caption for figure goes at the bottom.
4. Discussion

The significant improvement highlights the effectiveness of self-supervised learning (Graph MAE) [2] and global
attention mechanisms (Graph GPS) [3] within the GNN framework. This methodology effectively captures intricate
relationships in network data, enhancing detection accuracy of malicious flows.

5. Conclusion
Our study demonstrates the potential of advanced GNN architectures in improving network intrusion detection. Future

work will focus on scaling the model to larger datasets and investigating real-time detection capabilities.
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