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Abstract - A novel meta-heuristic optimization algorithm is developed to solve multi-objective Multi-disciplinary Design Optimization
(MDO) problems. The new algorithm, called multi-objective adaptive real-coded Memetic Algorithm (MARCOMA), is suitable for large
scale optimization problems. MARCOMA is then applied to solve an MDO problem. The problem has many design variables and three
disciplines including Navigation and guidance. Each discipline has its own design variables and analysis codes. Pitch Programming is
used as the guidance law. A three-channel autopilot is used for stabilization during the separation phase and for executing guidance
commands of the Aerial-Launched Vehicle (ALV) during flight phase. Navigation discipline has an inertial navigation system and
attitude and heading reference system to estimate Euler angles at GPS-denied environment. For this purpose, Extended Kalman Filter
parameters is optimized by measuring of angles to cooperate ALV to orbit. All disciplines are integrated in a 6-DOF flight simulation
and the two objectives, elevation angle estimation and inverse of injection velocity, are minimized concurrently. The result is a Pareto
set of non-dominated solutions within the performance space. The designer can choose an optimal solution based on his/her preferences
and compromises. The examination of different initial condition scenarios shows the excellent performance of the optimization algorithm
in solving the large-scale problem.
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1. Introduction

In real world applications, most of the design problems involve more than one engineering discipline. These problems
are addressed as Multidisciplinary Design Optimization (MDO) problem. MDO has been widely used in design optimization
of flying vehicles [1-5]. In the recent past, some authors employed gradient-based methods [6, 7]; however, modern
approaches to MDO problems have been updated and are now more frequently utilized. Techniques such as evolutionary
algorithms integrated with heuristic methods have emerged as dominant approaches. These methods benefit from high
convergence rates and population diversity while requiring only the objective function and constraints eliminating the need
for derivatives with respect to design variables. In contrast, gradient-based (GB) techniques often converge to local optima
and struggle with nonlinear, multi-modal design problems. These limitations have spurred growing interest in direct, global
heuristic optimization algorithms, including Memetic Algorithms (MAs), Evolutionary Algorithms (EAs), and other
metaheuristics [2, 3, 5]. MDO problems have frequently more than one objective to be optimized. However, most of the
researchers have solved single-objective MDO problems [1, 2, 4, 5]. Design of complex engineering systems often involves
multiple interacting disciplines and conflicting objectives. In [3], MDO of some flying vehicles are studied using multi-
objective (MO) optimization algorithms. Previous research works have employed simplification techniques like weighted
sum aggregation or cost function transformation to solve multi-objective optimization problems. Such methodological
simplifications inevitably propagate approximation errors into the optimization results, thereby leading to solutions that may
substantially diverge from actual problem constraints and objectives [8, 9]. These remedies are useful for simple engineering
designs, but the design outcomes are deteriorated for complicated systems such flying vehicles. Moreover, it cannot give the
designer enough insight about the decision space of the design problem. The main idea to obtain the solution of a multi-
objective optimization problem is the use of Pareto optimality condition [10].

There is an increasing interest in the application of EAs in multi-objective MDO problems [5]. The main reason to
use EAs in MDO is the most similarity between the iterative design process toward an optimal design and the evolution
process. Moreover, there are powerful meta-heuristics based on EAs and the field is rapidly growing up. EAs can also
successfully cope with high-dimensional, multimodal, and noisy problems. The later comes from the fact that they don’t
require derivatives or gradients of the objective functions. They have also the capability of finding global optimum solutions
amongst many local optima. Memetic Algorithms (MAs) are a class of modern meta-heuristics that combine EAs and Local
Search (LS) techniques to find the global optimum. MAs apply a separate LS process to refine the new born individuals. An

CIST 155-1



important aspect concerning MAs is the trade-off between the exploration abilities of EAs and the exploitation abilities of
the LS techniques. Previously, the authors developed an adaptive memetic algorithm for continuous problem domains (see
references [12] for details). In this paper, first a new multi-objective adaptive real-coded memetic algorithm is described
which is called Multi-objective Adaptive Real-Coded Memetic Algorithm (MARCOMA). The multi-objective MDO
problem of an Aerial Launch Vehicle (ALV) has been solved using the MARCOMA. The problem involves five different
disciplines including, navigation and guidance. The multi-objective algorithm optimizes concurrently 9 design variables in
such a way that both inverse orbital injection velocity and standard deviation of pitch angle with respect to pitch programme
of the ALV. The organization of the paper is as follows: in section 2, the new optimization algorithm, called MARCOMA is
introduced. In section 3, MDO of a ALV is defined as a multi-objective optimization problem. Design constraints are
introduced in section 4. Optimization results are presented in section 5. Finally, the conclusion is made in section 6.

2. Multi-objective Adaptive Real-coded Memetic Algorithm (MARCOMA)

Most MDO problems often have more than one objective function. Heuristic algorithms are very fit to cope with multi-
objective problems. Among of the heuristic optimization algorithms, Memetic Algorithms are able to tackle with MO
functions properly [13]. MARCOMA is the multi-objective variant of the recently developed MA, called Adaptive Real-
coded Memetic Algorithm (ARCOMA) [12]. ARCOMA is composed of two main components: a real coded steady-state GA
to provide exploration within the whole solution space, and a continuous LS scheme to exploit the most promising subspaces.
ARCOMA utilizes continuous Ant Colony System (CACS) for LS. Since MARCOMA works with one more than one
objective functions, Non-dominated Sorting (NS) strategy has solved this problem [12]. In this strategy, the population is
categorized into a set of layers within the performance space. Each layer contains a set of non-dominated individuals. The
first layer is called Pareto Frontier. The individuals of each layer dominate some individuals of the next layer. All of the non-
dominated individuals located in a layer have the same rank. Figure 1 shows the NS method for 2-dimension performance
space. An individual which has better rank, will has more chance to select as a parent, on the basis of standard Replace Worst
(RW) strategy. All of the individuals have same rank in a layer. In order to select a parent from a layer have used random
selection. Crowding Distance Assignment (CDA) is utilized to procure monotone layer and discard an individual from
crowded regions of population [12]. Figure 2 depicts the CDA method for 2-D performance space. Where, in Fig. 2, CDA is
calculated for ith individual in all of the n® individuals. The operators of MARCOMA are similar to ARCOMA [12].
MARCOMA possess its own crossover, parent selector and replacement operators. More details will be described in the
following.
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Fig. 1: Non-dominated Strategy for ranking of population  Fig. 2: Crowded Distance Assignment in a layer of Pareto Frontier

2.1. Selection

To generate each offspring, two parents must be selected from the mating pool. The new offspring is generated by using
of crossover and mutation operators. The selection scheme adopted here is based on the Negative Assortative Mating (NAM)
[14], as also proposed in [12]. In the NAM a first parent is selected by the roulette wheel method and NNAM chromosomes
(NNAM = 3) are also selected with the same method. Then the similarity between each one of these chromosomes and the
first parent is computed (similarity between two real-coded chromosomes is defined as the relative Euclidian distance). Then
the one with less similarity is chosen to be the second parent.

2.2. Replacement
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The standard Replace Worst (RW) is applied. In RW, offspring replaces the worst individual only if the new one is
better. This strategy is adequate as a combination with LS, because it is an elitist strategy, and it is recommended for MAs.
Furthermore, it offers a high selective pressure, making it a good complement for NAM [12].

2.3. Crossover

A new crossover method is developed in ARCOMA [12], which is based on BLX crossover method [15]. The new
method carries out crossover within the direction of differences between two selected parents in the all-search space. The
authors have considered two states for the parents. In the first state, suppose the case that in a specified dimension (1st
dimension) first parent (P1) is smaller than second parent (P2). The authors introduce two parameters o and 3 that show the
maximum allowed expansions along the subtraction vector P2-P1 to put the new offspring within the search interval (Figure
3). The following relations are derived for ai and Bi: In this case, the “(1), (2)” are used (Fig. 3):

4 PP
O S .B( 2-Py) b,
eS| R Rt o P2)
P} -=-=---- o Px2)
o, [2@P 7 o “
b P X
a Pyl Pl) b a P.(1) Pi(l) b
Fig. 3: Parent, (i dimension) > Parent; (it dimension) Fig. 4: Parent; (i dimension) < Parent; (i dimension)

where i, is number of each dimension, ai and bi are lower and upper bound in i dimension. In second state suppose that
in a specified dimension (2nd dimension) the first parent (P;) is bigger than that of the second parent (P»). In this case the
following relations (3), (4) are used (Fig. 4):
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Finally, with utilizing above equation for a; and B;, the crossover equation “(5),” is derived as follows:
P=P —a(P,— P,)+(1+a+ p)(P,— P,)rand (5)
where a and 3 are the permissible values of a; and Bi over all dimensions.
2.4, Mutation
The Nun-uniform mutation has been used in this paper. If this operator is applied in generation k, and NPOP is the maximum
number of generations then,
. \P.+A kb—P,) if =0
— 1 1
Fi=p - AE](,PI.— ag if =1 (6)
with 1 being a random number which may have a value of zero or one, and
A(l;y) =y(1 — rand(1 — %/ NPop)b) )

where rand is a random number from the interval [0,1] and b is a parameter chosen by the user. In this research b=16. This
function gives a value in the range (0, y) [12].
2.5. Local Search

MARCOMA utilizes a multi-objective variant of CACS entitled Multi-objective CACS (MOCACS). A simplified
variant of CACS is utilized for LS. Like in CACS, to provide a continuous pheromone model over the search space, the
pheromone distribution is considered in the form of a normal Probability Distribution Function (PDF) and ants choose their
next destinations using a random generator with the PDF. The fitness is calculated in the new point and some knowledge
about the search space is acquired, used to update the pheromone distribution. Basic distinction of MOCACS with respect to
CACS is in sorting of individuals. MOCACS utilizes NS for ranking of the individuals. Here the history of the travelled
points by the single ant is used to update pheromone. The number of search steps for LS (Nj.s) and the ratio of local to global
search domains (DRi2gs) have been proposed by the authors as a new contribution. In other words, Nirs and DR1gs are
adapted based on the distribution of pheromone, when good solutions are closed to each other, pheromone distribution is
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confined and vice versa. When pheromone distribution is confined, Nj.s is increased and DRy,gs is decreased to permit the
more concentrated LS and vice versa. Nj.s and DRy ,gs are calculated as follows:

n
e e
i= 1 — Vi i= 10/ =Y )
Nis = l[ N5 Cii— %7 )/ o] )
568 = CLs? (10)
where x; is the magnitude of each attribute in the ith dlmensmn of and y; is the corresponding fitness function. The * sign
denotes the best solution found so far. Also, Nis and Cis are algorithm parameters that should be tuned and pheromone
distribution. In MARCOMA, the global exploration is carried out in the whole search space and ants search within limited
search intervals. MARCOMA is strongly proposed by the authors for large scale multi-objective problems like MDO. The
population is initialized at the beginning of MARCOMA running. After that, all of the individuals are sorted by using of NS
strategy. The population insert to main loop of MARCOMA and selection operator, choose Nofrpring-th individuals to be
parents. The crossover and mutation schemes are exerted on the parents. In this spot, LS process is applied on the offsprings
and then replacement operator, tune the population. In the MARCOMA algorithm, to prevent premature convergence and
getting trapped in local optima, the algorithm's convergence criterion is used. Specifically, the standard deviation of the
objective function is divided by the mean of the objective functions, and if this fraction is less than the convergence threshold,
the population is regenerated. The convergence threshold in this algorithm is 0.05, and the number of regenerated individuals
in the population is 40% of the total population size. Flowchart of the MARCOMA can be seen in Figure 5. MARCOMA
has six tuning parameters which have been tuned by the authors. Table 1 shows the tuned parameters.

-
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Fig. 5: MARCOMA General Flowchart
Table 1: MARCOMA Parameters

Parameters Values Descriptions
Nrop 20 Population size
Nofrspring 2 Number of offspring’s
Nyan 3 Number of candidates as the
second parent of NAM
Nis 0.9 Local search iterations factor
CLs 10 Local search interval factor
Pymur 0.125 Mutation Probability

3. Definition of the MDO Problem

MDO of a ALV is defined in this section. The ALV is considered as Pegasus XL configuration [16]. Figure 6 shows a
schematic of the Pegasus air-launch vehicle and the Lockheed L-1011 TriStar aircraft at the moment of initial stage separation
and flight time history. Based on fig. 6, flight phases and stages separation are modelled and implemented at simulations
scheme. Given the mandatory control system operation immediately after separation to ensure both (1) safe clearance from
the carrier aircraft and (2) stability against aerodynamic disturbances generated by the aircraft's wake vortex, one of the
critical challenges in air-launched satellite vehicles is navigation; where both the current and future attitude of the launch
vehicle must be precisely determined. Launching from an aircraft introduces significant safety and navigational complexities.
On one hand, the safety of the carrier aircraft must be ensured, while on the other, the launch vehicle requires accurate
trajectory guidance.
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Fig. 6: Pegasus XL with L-1011 Aircraft
The primary navigation method for launch vehicles typically relies on an integrated INS/GPS system [17]. However,
this paper addresses a key challenge: GPS denial due to magnetically disturbed environments and electromagnetic
interference [18]. To overcome this limitation, the proposed solution assumes that the launch vehicle’s Inertial Navigation
System (INS) is augmented with an Attitude and Heading Reference System (AHRS). During low-acceleration phases (when
the engine is off), the AHRS supplements the INS by providing pitch and roll angle corrections. Additionally, a separate
magnetometer is employed for north-referenced heading estimation. To ensure high-accuracy attitude estimation, an
extended Kalman filter (EKF) is implemented. The filter processes linear accelerations and angular velocities from the IMU
(Inertial Measurement Unit) and integrates them with body-frame acceleration and gravitational acceleration measurements
from the AHRS to estimate pitch and roll angles. A critical factor in achieving reliable estimation is the proper tuning of the
process noise covariance matrix (Q) and the measurement noise covariance matrix (R). These matrices directly impact filter
performance, and suboptimal values can lead to drift or instability. Therefore, in this study, the elements of Q and R are
treated as design variables and are optimized to enhance navigation accuracy under GPS-denied conditions. A rigorous
derivation of the EKF's state transition (process) and observation (measurement) equations can be found in [19]. To calculate
the pitch angle using the AHRS sensor and Kalman filter under conditions where the launcher's acceleration is less than 1g,
the Eq. 11 is used: In the 11.a equation, ay is the AHRS-measured axial acceleration, and a, is the AHRS-measured normal
acceleration. Additionally, the roll angle is obtained from the Eq. 11.b:
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0= tan_l(;—’z‘) S P = tan_l(_a;z) -7 (11.a,b)
The general equations of the Kalman filter are summarized below: The measurement vector includes three AHRS Euler

angles as Eq. 12:
Um (12)

V.= Hka+ V,= Ol + v,

where: ykis measurement vector, H kis Observation matrix, vi~N (0, Ry) is measurement noise and Ry is Measurement noise
covariance. Also process model (prediction) consists of state propagation and covariance prediction as Eq. 13 and 14
respectively:
X =F G By Wy (13)
P =F (PEF_ + Qe y (14)
Where: x™ , is predicted state vector (e.g., Euler angles), Fi-1 is state transition matrix, w1 is control input (if
applicable), wi-1~ NV (0, Qx-1) is process noise, P~ , is predicted error covariance and Q-1 is process noise covariance. The
Kalman gain, state update and covariance update equations are Eq. 15 as follow:
K= P H{(HP; H+ R)™ L x5 =x; + Ky, — Hx ); PE=d- KHJP; (15)
The noise model used in this study for the rate-gyro and accelerometer IMU is based on the ADIS16488 sensor.
Figure 7 shows the noise output of the accelerometers and gyros at simulation. The noise power used in simulations was set
to: for accelerometers, Noise power (PSD) = 3 X (0.00013)? = 5.437 x 10~® m%s°, and for gyros, Noise power (PSD) = 3 x
(0.00000063)?> = 1.216 x 107'2 rad?*/s®. The problem involves two different disciplines for multi-objective multidisciplinary
design, namely guidance and navigation. Utilizing the analysis codes of these disciplines, a 6-Degree of Freedom (6-DOF)
flight simulation has been developed to solve the general equations of motion and to obtain the objective functions. The 6-
DOF has aerodynamic, propulsion, autopilot and flight dynamics disciplines. Here, designer wants to simultaneously
minimize both inverse orbital injection velocity and standard deviation of measured with respect to ideal pitch angle, which
is obtained from solving the propagation equations in the simulation. The guidance discipline used pitch programmed scheme
for pitch angle commands which was approximated using a piecewise exponential function that captures the essential
characteristics of the desired attitude profile. The proposed pitch program approximation provides a smooth, parametric
representation of the vehicle's attitude profile during ascent. The function captures the characteristic pitch-over maneuver
through a continuous analytical formulation with physically interpretable parameters. The pitch angle 0(t) is modelled as a
function of the independent variable t (typically time) using a composite exponential expression:
0)= 6+ (0,— 6,)-[1 - e~ kel - e~ k=)' for 20 (16)
where: 0, = Peak pitch angle (design variable), 0= Final pitch angle (design variable), t, = Peak time (design variable), k, =
Growth rate coefficient (design variable), kq = Decay rate coefficient (design variable). The performance of the proposed
pitch program approximation can be seen in Figure 8 by setting of: 6, = 40°, 0= -28°,t, =36 s, kg =0.15 s7*, kg = 0.0005
s7!. This figure demonstrates that the optimized curve can be obtained by vertically adjusting the pitch angle values at fixed
time intervals.
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Fig. 7: the proposed pitch program approximation using piecewise Fig. 8: the proposed pitch program approximation using
exponential function piecewise exponential function

The Missile DATCOM software was employed to calculate aerodynamic force and moment coefficients for the 6-DOF
simulation. The Pegasus launch vehicle configuration was modeled using this software, and the relevant coefficients were
extracted. The NRLMSISE-00 atmospheric model was utilized for atmospheric simulation. The three-stage thrust profile of
the aforementioned launch vehicle's engine was implemented in the simulation. Thrust Profile and mass time history of ALV
depicted at figure 9 during flight simulation. A proportional controller with variable coefficients was designed for the roll
channel. The PI controllers were implemented for both pitch and yaw channels. Aerodynamic fins and Thrust Vector Control
(TVC) were employed for attitude control within the flight. All aerodynamic forces and moments, mass variations, center-
of-mass changing, and inertia tensor were incorporated into the flight dynamics model. The equations of motion were solved

with respect to the Earth-fixed inertial reference frame.
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Fig.9: Approximate thrust profile (left) and mass versus time in flight time (right)

The optimization design variables of the above two disciplines have been listed in Table 2, including the corresponding
search intervals. A total of 9 design variables across two disciplines were optimized. It should be noted that the yaw angle
element in both the measurement and process noise matrices was held constant and was not included among the design
variables.

TABLE 2 Design Variables and objective functions

Disciplines Design Variables Min design space Max design space Descriptions
0, 20 (deg) 80 (deg) Peak pitch angle
tp 20 (sec) 40 (sec) Peak time
Guidance Or -40 (deg) 0 (deg) Final pitch angle
ke 0.001 1 Growth rate coefficient
kq 0.001 1 Decay rate coefficient
Navigation Q(2,2) 10e-7 10e7 element of process noise matrix for 0 (pitch angle)
Q(3,3) 10e-15 10e15 element of process noise matrix for 8 (pitch angle)
R(2,2) 10e-7 10e7 element of measurement noise matrix for ¢ (roll angle)
R(3,3) 10e-15 10el5 element of measurement noise matrix for ¢ (roll angle)
Objective functions Functions Descriptions
Fi1=1/ Vi Inverse of orbital injection velocity
Fo=std(0i-Omeas) standard deviation of measured with respect to ideal pitch angle

4. Design Constraint Checking and Assumptions

After the MARCOMA optimization algorithm sends the design variables for evaluation to the objective function, two
constraints are checked before running the six-degree-of-freedom simulation. This is done to prevent lengthy executions and
unrealistic designs. One of these constraints is the error in the measured pitch angle compared to its true or ideal value. As
mentioned earlier, the yaw angle is obtained using a magnetic north finder, which is not the subject of this research. Therefore,
if the measured pitch and roll angles from the AHRS become singular, first constraint is applied such that a large penalty will
be applied to the objective functions. The second constraint relates to the launcher's velocity at the desired altitudes for
payload injection (altitudes greater than 500 km). It's important to explain that as the launcher's altitude increases during
flight, the theoretical circular orbital velocity decreases. On the other hand, with increasing altitude and the ignition of the
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launcher's third stage, the injection altitude reaches beyond 500 km. Therefore, in the times after the third stage ignites, the
difference between the launcher's velocity and the circular orbital velocity is compared. If the launcher's velocity is greater
than the orbital velocity, the cost function will be calculated; otherwise, a penalty will be applied to the cost function, and
that design variable will automatically be removed from the memetic population. In any iterations of MARCOMA, all design
attributes (an individual) insert to initialization of 6-DOF flight simulation code. After checking and meeting all mentioned
assumptions and constraints, the guidance and navigation disciplines initializations run and it produces the command pitch
angle and process and measurement noise covariance matrices (Q and R). Then, the system applies a 5g jettison impulse
semi-parallel to gravity. Engine ignition occurs after a 5-second delay, during which aerodynamic stabilization is performed.
Upon engine ignition, the Thrust Vector Control (TVC) system activates, executing pitch angle commands as determined by
the optimization algorithm. The launch vehicle continues its powered ascent until reaching t+1000 seconds of flight time.
Following termination of the six-degree-of-freedom (6-DOF) simulation, all objective functions are computed and finally
passed to the optimization algorithm as the objective functions.

5. Results and Discussion

The Pareto frontiers obtained after evaluating 10000 design points are shown in Figure 10. In this figure 65 various
pareto frontier are shown in lefts and final non-dominated solutions is depicted at right. The convergence of Pareto frontiers
toward the origin of the two-dimensional performance space can be observed while the number of design evaluations
proceeds. Each Pareto frontier contains the solutions that none of which can dominate any other (non-dominated solutions).
The designer can select the final design point based on his/her compromises and/or preferences.
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Fig.10: 65 distinct pareto front at 10000 function evaluation (left)- final pareto front after 10000 function evaluation (right)

To demonstrate the trade-space analysis, a Pareto-optimal frontier point was selected using min-max normalization
between competing objectives. The launch vehicle’s simulated performance at this design point is shown below: "Figure 11
quantifies AHRS pitch angle accuracy under two conditions: (Left) Kalman-filtered estimation vs. truth-model simulation
(0.04° std. dev.), and (Right) unfiltered AHRS vs. simulation (0.07° std. dev.). The filter reduces angular error by 40%,
validating its efficacy for attitude determination.
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Figure 12 characterizes the injection phase: (Left) Convergence of launch vehicle velocity with required orbital velocity
after t+600s, and (Right) Time-history of achieved orbital altitude, confirming successful payload insertion conditions.
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Fig.12: Convergence of launch vehicle velocity with required orbital velocity after t+600s (left)- Time-history of achieved orbital
altitude (right)

6. Conclusion

This paper presents a novel multi-objective adaptive real-coded Memetic Algorithm (MARCOMA) designed to address
complex Multidisciplinary Design Optimization (MDO) problems. Specifically, it focuses on the optimal multi-objective
design of an integrated Inertial Navigation System (INS)/Attitude and Heading Reference System (AHRS) for an ALV
operating in GPS-denied environments. The core problem tackled is the accurate estimation of Euler angles in environments
where GPS signals are unavailable, integrating navigation, guidance, and control disciplines within a 6-Degree of Freedom
flight simulation. To achieve high-accuracy attitude estimation, an Extended Kalman Filter (EKF) is implemented, and its
critical parameters—the process noise covariance matrix (Q) and measurement noise covariance matrix (R)—are optimized
as design variables. The guidance discipline employs a pitch programmed scheme, approximated by a piecewise exponential
function, adding another set of design variables. The study concurrently minimizes two main objectives: the inverse orbital
injection velocity and the standard deviation of the measured pitch angle relative to the ideal pitch angle. This multi-objective
approach generates a Pareto set of non-dominated solutions, allowing designers to select an optimal solution based on their
specific preferences and compromises. The optimization process involved a total of nine design variables across the guidance
and navigation disciplines, with explicit design constraints checked before running the 6-DOF simulation to prevent
unrealistic designs. MARCOMA demonstrates excellent performance in solving this large-scale MDO problem. It is a multi-
objective variant of the Adaptive Real-coded Memetic Algorithm (ARCOMA), which combines a real-coded steady-state
Genetic Algorithm (GA) for global exploration with a multi-objective adaptive variant of Continuous Ant Colony System
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(CACS) for local exploitation. This hybrid approach effectively addresses the limitations of Evolutionary Algorithms (EAs),
such as slower convergence rates, while maintaining their ability to find global optimum solutions in complex search spaces.
Key features of MARCOMA include its Non-dominated Sorting (NS) strategy for ranking populations and Crowding
Distance Assignment (CDA) to maintain population diversity.

The results obtained from evaluating 10,000 design points confirmed the effectiveness of the proposed system.
Specifically, the Kalman-filtered AHRS pitch angle accuracy showed a significant reduction in angular error, achieving a
0.04° standard deviation compared to 0.07° for unfiltered AHRS, representing a 40% improvement. Furthermore, the
optimization successfully ensured the launch vehicle's velocity converged with the required orbital velocity and reached the
desired orbital altitude, confirming successful payload insertion conditions. In conclusion, this research successfully develops
and applies MARCOMA for the optimal multi-objective design of an integrated INS/AHRS system for an Aerial Launch
Vehicle, particularly in challenging GPS-denied environments. The methodology provides a robust and effective framework
for addressing complex engineering design problems with conflicting objectives, offering significant advancements in
autonomous navigation capabilities for aerospace applications.
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