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Abstract - The increasing application of electric motors across various industrial sectors requires effective monitoring and early
diagnostics to prevent potential failures. This study explores the use of Convolutional Neural Network (CNN)-based models together
with Symmetrized Dot Pattern (SDP) sound representations for classifying the health status of electric motors under different noise
conditions. Acoustic data from a brushless DC motor were transformed into SDP images, which were then used to train CNN models.
The dataset included recordings of motors in “Good”, “Broken” and “Heavy Load” conditions, captured under various noise
environments such as pure, talking, white noise, atmospheric, and stress test conditions. The classification tasks were conducted under
three conditions: assessing motor health status, evaluating both motor health status and noise types, and excluding the stress test noise
type for a balanced dataset. The results demonstrated that the CNN models achieved high accuracy rates in classifying motor health
status, with the Custom CNN model performing best in simpler tasks and MobileNet excelling in more complex scenarios. The study
highlights the feasibility of using SDP images with CNN-based models for fault classification in motors and suggests future research
directions for improving classification accuracy through advanced feature extraction techniques and multimodal data representations.
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1. Introduction

In recent decades, there has been a global trend towards the increasing application of electric motors in various industrial
sectors, thanks to their advantages in terms of efficiency and precision. They are characterized by a wide range of power,
speed, and other key parameters. Electric drives find applications in all industrial sectors, including energy, mechanical
engineering, metal and woodworking, food processing, pharmaceuticals, as well as in the textile, pulp, construction, and
other sectors [1, 2].

On the other hand, electric motors are prone to various faults, including rotor asymmetries, bearing failures, and
insulation degradation [3 - 5]. That’s why the monitoring and the early diagnostics are of great importance for eliminating
potential failures and malfunctions. This, in turn, leads to increased productivity, reliability, and operational safety of electric
drive systems.

Traditional fault detection methods often rely on vibration analysis, current signature analysis, or thermal monitoring [6,
7]. Different types of fault detections and diagnosis with acoustic signals together image classification using neural networks
are presented and analyzed in [8, 9]. The SDP method stands out due to its ability to visualize complex periodic and aperiodic
signal behaviors in a compact graphical form, allowing for easier fault identification. The SDP technique has been
successfully applied to detect various motor faults, including: rotor faults: cracked or broken rotor bars manifest as distortions
in the pattern's symmetry; bearing faults: localized defects in bearings produce irregular dot clusters or noise-like features;
stator faults: winding imbalances or insulation failures disrupt the uniformity of the dot distribution [10 - 15].
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Machine learning and artificial intelligence represent modern methods for applying techniques and algorithms for
monitoring and diagnosing electric drive systems, offering enhanced accuracy and efficiency compared to traditional
approaches. These methods leverage advanced algorithms, such as neural networks, decision trees, and ensemble techniques,
to process large datasets and extract meaningful patterns related to system health. In particular, CNNs have demonstrated high
effectiveness in analyzing images obtained through signal processing techniques for fault detection and classification.

This study, focuses on how acoustic data can be represented and utilized for detecting faults in electric motors. The study
explores various methods for collecting and processing acoustic signals, and how these can be analyzed using machine learning
models to identify potential defects with corresponding probabilities of occurrence.

2. Dataset

The SDP technique transforms time-domain signals into two-dimensional dot patterns based on signal amplitude and
phase relationships. The process involves: Signal Transformation: vibration or current signals are sampled and normalized;
Dot Pattern Formation: consecutive points in the signal are plotted in a symmetrical arrangement to reveal periodic features
and anomalies; Fault Analysis: patterns are evaluated for distortions, asymmetries, or irregularities indicative of faults [10].

Dataset Distribution
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Fig. 1: Dataset distribution.

For this experiment, the IDMT-ISA-ELECTRIC-ENGINE Dataset was utilized [16]. The dataset was split into training,
validation, and testing subsets. Sound recordings generated by the ACT DC Brushless Motor 42BLF01, operating at 4000
RPM and 24VDC, were included. The recordings were captured using an improvised microphone with the following
specifications: frequency range of 50 Hz to 20 kHz, voltage range of 2 V to 10 V, omnidirectional, and sensitivity of —35 dB
+4 dB.

Recordings of three different motor conditions were included in the dataset:

1. Good Condition: The first motor was operated at 60% of the supply voltage, representing the “good” working

condition.

2. Broken Condition: The second motor's supply voltage was varied every 18ms between 15% and 75% to simulate a

“broken” condition.

3. Heavy Load Condition: The third motor was subjected to an additional load, with a supply voltage of 60% of the

nominal value, to represent the “heavy load” condition.
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Recordings of electric DC motors operating in various sound environments were featured in the dataset, including:

e Pure: Recordings without the presence of other sounds or noise (no domain-shift).

e Talking: Recordings with the presence of audible conversations near the case surrounding the device.

e White Noise: Recordings with background white noise generated by nearby speakers.

e Atmo: Recordings with sounds from a factory environment emitted by speakers in three volume levels (low, medium,

high).

e Stress Test: Recordings with controlled variations in loudness.

Figure 1 shows the dataset distribution across different motor health conditions and their associated noise types. The
outer ring represents the health conditions, while the inner ring shows the detailed distribution of noise types within each
health condition. The “good” health condition accounts for 32.5% of the data, followed by “broken” with 33.2% and
“heavyload” with 34.3%.

Table 1 provides the dataset distribution after splitting into training (80%), validation (10%), and test (10%) sets based
on motor health status and noise types. The training set contains a total of 1,896 samples, distributed as 617 for “good” 629
for “broken” and 650 for “heavyload”. The validation set has 236 samples and test set has a total of 246 samples. Among
noise types, “talking” has the highest number of samples across all splits, while “stresstest” has the lowest number, reflecting
the dataset's inherent imbalance in noise distribution.

Table 1: Dataset after splitting.

Noise Train (%80) Validation (%10) Test (%10)
Type Good | Broken | Heavyload | Good | Broken | Heavyload | Good | Broken | Heavyload
Pure 84 99 102 10 12 13 11 13 13
Talking 225 226 236 28 28 30 29 29 30
Whitenoise | 107 103 112 13 13 14 14 13 14
Atmo 169 169 168 21 21 21 22 22 21
Stresstest 32 32 32 4 4 4 5 5 5
Total 617 629 650 76 78 82 81 82 83

3. Experimental Results
The classification task was conducted under three different conditions to evaluate motor health status and noise types.
These conditions were designed to evaluate the impact of motor health status and noise conditions on classification
performance. In all conditions, classification was performed using MobileNet V2 [17], Inception V3 [18], and a custom CNN
model.
The architecture of the custom CNN model consists of three convolutional layers with increasing filter sizes (32, 64, and
128 filters, respectively) and a kernel size of 3%3. Each convolutional layer employs the ReLU activation function and is
followed by a max-pooling layer with a pool size of 2x2 to reduce spatial dimensions and computational complexity. The
feature maps generated by the convolutional layers are flattened and passed to a dense layer comprising 128 neurons with
ReLU activation to learn high-level features. To prevent overfitting, a dropout layer with a rate of 0.5 is applied. Finally, the
output layer uses the softmax activation function to produce probabilities for each of the three classes, enabling multi-class
classification.
e Condition-1: A 3-class classification focused solely on assessing motor health status.
e Condition-2: A 15-class classification aimed at evaluating both motor health status and noise types simultaneously.
e Condition-3: A 12-class classification where data from the “stresstest” noise type was excluded. This adjustment
was made because the number of samples under the “stresstest” condition was significantly lower compared to other
noise conditions, ensuring a more balanced dataset for classification.

EEE 107-3



1

Confusion Matrix

0.95 8
0.9 g 7
g 2
s 0385 - “
> 0.8 _ s0
2 2
*3- 0.75 g‘g »
£ 07 = .
0.65 Validation E "
0.6r Train =3
0.55 y - * . - . . . . _E:E 10
0 5 10 15 20 25 30 35 40 45 50

broken gdod

Predicted Label

heavyload

Epochs

a) b)
Fig. 2: Accuracy graph (a) and Confusion matrix for Condition-1 (b).

Figure 2 illustrates the performance of the custom CNN model for 3-class classification. Figure 2(a) presents the
variation of accuracy values during training and validation phases, indicating that the model achieved an accuracy level above
95%. Figure 2(b) displays the confusion matrix, which shows the percentage of correctly classified samples for each class.
For instance, all samples in the “broken” class were correctly classified, while 3 samples in the “good” class and 6 samples
in the “heavyload” class were misclassified. These results demonstrate the model's strong performance in accurately
distinguishing between classes.

Table 2 shows the class-based performance metrics of the CNN model for the 3-class classification task. The metrics
cover precision, recall, F1-score, and accuracy for each class and overall performance. The “broken” class achieved 100% in
all metrics, indicating that all samples in this class were classified correctly. The “good” and “heavyload” classes achieved
precision, recall, and F1-scores above 92%, with accuracy values of 96.34% for both classes. The overall performance metrics
suggest that the model performs consistently across all classes, with an overall precision of 96.37%, recall of 96.36%, F1-
score of 96.34%, and accuracy of 96.34%.

Table 2: Class-based performance metrics for Condition-1.

Class Precision Recall F1-Score Accuracy
Broken 100.00 100.00 100.00 100.00
Good 92.86 96.30 94.55 96.34
Heavyload 96.25 92.77 94.48 96.34

Overall 96.37 96.36 96.34 96.34

Figure 3 illustrates the t-SNE visualization of the data distribution across the three classes. The visualization reduces the
high-dimensional feature space into two dimensions, enabling a clear representation of the class separability. The clusters
formed in the plot indicate that the samples belonging to the same class are grouped closely together, while different classes
are distinctly separated. This suggests that the features extracted by the model effectively differentiate between the classes,
supporting the classification performance observed in other metrics.
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Fig. 3: t-SNE visualization.

Figure 4 illustrates misclassified samples belonging to the “good” class. Each plot represents a sample from the “good”
class that was incorrectly predicted as “heavyload”. The probability scores for each class are provided above the respective
plots, showing the model's confidence in its predictions. Despite belonging to the “good” class, the model assigns a higher
probability to the “heavyload” class, leading to misclassification. All misclassified samples were generated under the
“stresstest” noise type, which may have introduced patterns that resemble features of the “heavyload” class, increasing the
likelihood of confusion. This observation suggests that the “stresstest” noise type could have a significant impact on the
model’s feature extraction and classification process, highlighting the importance of further analysis to mitigate the effects
of such noise on classification accuracy.

True: good (Stresstest) True: good (Stresstest) True: good (Stresstest)
Pred: heavyload Pred: heavyload Pred: heavyload
broken: 0.00 broken: 0.00 broken: 0.00
good: 0.01 good: 0.28 good: 0.29

heavyload: 0.99 heavyload: 0.72 heavyload: 0.71

Fig. 4: Misclassified samples belonging to the good class.

Figure 5 shows misclassified samples belonging to the “heavyload” class under different noise types. Each visualization
represents a sample incorrectly predicted as belonging to the “good” class. Notably, most misclassifications occurred under
the “stresstest” noise type. In some cases, the model predicted the “good” class with high confidence, while in one instance,
an equal probability distribution between the “good” and “heavyload” classes (0.50 each) was observed. This suggests that
the “stresstest” noise conditions may have introduced uncertainty in the model's predictions. Under the “atmo” and “talking”
noise types, the model predicted the “good” class with high confidence, leading to misclassifications.
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These observations indicate that the “stresstest” noise type poses a greater challenge for the model, highlighting the need
for targeted solutions such as improved noise handling techniques or additional feature engineering strategies to enhance

classification accuracy.
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Fig. 5: Misclassified samples belonging to the heavyload class.

Performance metrics of the models on different conditions is given in Table 3. In Condition-1, all models achieved their
highest performance, with Custom CNN obtaining the best metrics. In Condition-2, performance decreased significantly due
to the increased complexity, where MobileNet achieved the highest accuracy and Fl-score. Condition-3 led to improved
performance compared to Condition-2, as MobileNet again outperformed with 81.39% accuracy and 80.41% F1-score. These
results highlight that the complexity of the classification task and data imbalance significantly impact model performance.
While Custom CNN excelled in simpler tasks (Condition-1), MobileNet demonstrated robustness across varying conditions,
whereas InceptionV3 consistently lagged.

Table 3: Performance metrics of the models on different conditions.

Conditions Models Precision Recall F1-Score Accuracy
MobileNet 95.93 95.91 95.91 95.93
Condition-1 InceptionV3 94.56 97.15 94.28 94.31
Custom CNN 96.37 96.36 96.34 96.34
MobileNet 73.28 72.56 71.66 76.02
Condition-2 | InceptionV3 70.87 66.64 65.60 73.17
Custom CNN 73.09 68.75 68.60 73.58
MobileNet 84.94 80.40 80.41 81.39
Condition-3 | InceptionV3 75.12 70.84 68.60 73.59
Custom CNN 81.63 75.85 75.94 77.49
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Figure 6a shows the confusion matrix for MobileNet under Condition-2, which involves a 15-class classification
combining motor health status and noise types. The matrix provides detailed insights into the model's predictions for each
class. It can be observed that when the motor health condition is “good”, the noise types are classified more accurately.
However, for the “broken” and “heavyload” health conditions, distinguishing between different noise types is more
challenging. This highlights the need for further refinement in feature extraction or implementing noise mitigation strategies
to improve the classification of noise types, particularly under “broken” and “heavyload” health conditions.

Figure 6b presents the confusion matrix for MobileNet under Condition-3, where the “stresstest” noise type has been
excluded, resulting in a 12-class classification. The exclusion of the “stresstest” noise type appears to have improved the
model's performance overall. However, the overlap in certain noise types under “broken” and “heavyload” conditions
suggests that further refinement in feature extraction may be necessary to enhance classification accuracy for these health
conditions.
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Fig. 6: Confusion matrices of MobileNet for Condition-2 (a) and Condition-3 (b).

4. Conclusion

In this study, acoustic data obtained from a brushless DC motor under different health and noise conditions were
converted into SDP images. Using these images, the classification of the motor’s health status was performed with CNN-
based models. The CNN models were trained under various noise conditions to better adapt to real-world scenarios. In health
status classification, accuracy rates of 94.31%, 95.93%, and 96.34% were achieved with InceptionV3, MobileNet, and
Custom CNN models, respectively. These results demonstrate the feasibility of using SDP images with CNN-based models
for fault classification in motors. However, when the noise type is also included in the classification along with the health
status, accuracy rates drop to as low as 73.17%. While Custom CNN provided the best results for health status classification
alone, MobileNet emerged as the most successful model in more challenging scenarios where noise types were also included
in the classification. In future studies, different feature extraction techniques will be applied to the acoustic data, and various
representations of the data will be combined in multimodal structures to improve classification accuracy.
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