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Abstract - Power consumption and device variability are becoming critical challenges in processor design. Memristor-based
architectures are emerging as a promising alternative to traditional CMOS technology. Specialized architectures offer greater energy
efficiency than general-purpose systems. However, designing application-specific computing systems can be costly. Reconfigurable
architectures present a viable solution by delivering high performance and low power consumption at a more reasonable cost. This paper
proposes a reconfigurable architecture based on memristor-crossbar tiles. In a tile, there is on average one-quarter of a transistor per
memristor for storage, which gives a significant area benefit compared to a 1T1M crossbar tile. A single tile array could be configured
for any of the following operations: memory, search, neural network, and Boolean function implementation. For these operations, we
leverage the computation in memory feature of the memristor crossbar. 
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1. Introduction
Big data and artificial intelligence (AI) will be the dominating applications in the next decade. Numerous systems—such

as surveillance, autonomous vehicles, and pattern recognition in camera—rely heavily on image processing tasks. Neural
networks are extensively employed for pattern recognition, signal processing, and image processing applications [1–3]. In
big data applications, content search is one of the dominant operations.

General-purpose computing systems are designed to support a wide range of applications. However, the extensive
flexibility they offer often comes at the cost of reduced energy efficiency. Power consumption and device variability have
become critical concerns in modern processor design [5]. In response, researchers are exploring various strategies to develop
more energy-efficient processors. These efforts include architectures for approximate computing that leverage techniques
such as dynamic voltage scaling, dynamic precision control, and inexact hardware implementations [6,7]. Additionally,
application-specific architectures have been proposed for targeted domains like signal and video processing [7]. Despite their
performance and power efficiency benefits, designing such specialized systems can be costly. Reconfigurable architectures
offer a compelling alternative, combining high performance, low power consumption with cost-effectiveness.

The concept of the memristor was first introduced in 1971 by Dr. Leon Chua [8]. Since then, various research teams
have demonstrated memristive behaviour using different materials. A TiO₂ based memristor device published in [9], exhibits
a high on-state resistance (RON ≈ 125 kΩ) and a large resistance ratio (ROFF/RON ≈ 1000). The resistance state of a memristor
device can be changed by applying a voltage greater than a threshold across the device [9,10,11]. The specific device
presented in [9] has a threshold voltage of approximately 4V. Memristors can be arranged in a dense grid structure known as
a crossbar, with the schematic and layout illustrated in Fig. 1.

The memristor crossbar structure enables highly efficient parallel evaluation of multiply-add operations in the analog
domain. A memristor crossbar has the sneak path current problem which makes accessing a single memristor challenging.
Yue et al. proposed a reconfigurable architecture based on 1T1R (one transistor, one RRAM) crossbars for memory and
computation purposes [12]. A 1T1R crossbar has a significant area overhead compared to a 0T1M (0 transistor, 1 memristor)
crossbar.
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Fig. 1: (a) Memristor crossbar schematic and (b) memristor crossbar layout.

This paper presents a reconfigurable architecture based on memristor crossbar tiles. To minimize sneak path currents,
we employ 8×8 memristor crossbar arrays, utilizing the memristor device described in [9]. In a tile, there ison average ¼
transistor per memristor for storage. A single tile could be configured for any of the following operations: memory, search,
neural network, and Boolean function implementation.

In traditional computing systems, data transfer accounts for a substantial portion of overall power consumption. Studies
on various multicore systems have reported that 30% to 40% of system power is consumed by the on-chip network [13]. In
the proposed system, data is processed near its physical location. Consequently, the proposed memristor-based architecture
can achieve a significant reduction in data transfer energy.

The rest of the paper is organized as follows: Section 2 describes the related works in the area. Section 3 describes the
proposed processing-in-memory architecture. Sections 4, 5, 6, and 7 describe the memory, neuron, search, and Boolean
function implementation in the proposed architecture respectively. Finally, in Section 8, we conclude our work. 

2. Related Works
Sun et al. designed a 1T1M cell-based memory array and proposed a parallel testing method for the memory system

[14]. Yue et al. proposed a reconfigurable architecture based on 1T1R (one transistor, one RRAM) crossbars for memory and
computation purposes [12]. Yakopcic et al. designed a memristor-based cache memory and evaluated its system level impact
[15]. 

Several studies examined memristor-based synapse, neuron, and neural network designs. Zhang et al. [16] designed a
hybrid spiking neuron circuit combining memristor, and CMOS devices. They demonstrated a fully hardware execution of a
spiking neural network based on the hybrid neuron circuit. Alibart et al. demonstrated ex-situ and in-situ training of memristor
crossbar-based linear classifiers using the perceptron learning rule [18]. They have not examined the training of non-linearly
separable problems and have not provided details of the ex-situ and in-situ training circuits. IBM designed and fabricated a
64-core processing in-memory chip based on phase-change memory device for the inference operation of deep neural
networks [17]. They utilized ex-situ training and ADC circuit in the system.

Soudry et al. [19] proposed in-situ training of memristor crossbar neural networks based on the gradient descent learning
rule. They implemented a synapse using two transistors and one memristor. Work in [20] designed an on-chip training system
for multi-layer neural networks based on the back-propagation learning algorithm. They implemented the synaptic weights
in memristor crossbar arrays and used ADC, DAC circuits for the training operations.

Kim et al. designed a CMOS circuit for a ternary content addressable memory [21]. Work in [22] demonstrated a TCAM
cell that utilized 1 transistor and 1 RRAM for each bit-cell. Works in [23] demonstrated a memristor-based content search
circuit using approximately 4 memristors for each bit-cell. Xiao et al. designed an STT-RAM based nonvolatile lookup table
(LUT) for Boolean function implementation [24]. Work in [25] proposed a design methodology for logic circuit
implementation using memristor crossbars. Their methodology optimized the design of logic functions and automatically
mapped them onto the memristor crossbar.
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3. Proposed Architecture
Fig. 2 shows the overall architecture of the proposed memristor tile array based reconfigurable system. The memristor

tile arrays are connected through static routing elements. A configurable element in the system has a memristor crossbar
array, input buffer, output buffer, and control logic circuits. Fig. 3 shows the block diagram of a memristor based tile array.
The control logic generates appropriate control signals (e.g., the pass transistor control signal in Fig. 6) for a desired
operation. A single tile could be configured for any of the following operations: memory, search, neural network, and Boolean
function implementation based on the application requirement.

Fig. 2: Proposed memristor tile array-based 
reconfigurable multi-purpose architecture.

Fig. 3: Memristor crossbar based tile array along with input 
buffer, output buffer, and control circuit block.

SRAM-based static routing is utilized to facilitate re-programmability in the switches [26]. Fig. 4 shows the routing
switch design. Fig. 5 shows the block diagram of a memristor crossbar-based tile array, while Fig. 6 shows the schematic of
the tile array. Each memristor tile is consisting of an 8×8 memristor crossbar and pass transistors connected to the rows and
columns. A tile array is consisting of 4 memristor tiles. Configuring the pass transistors of the tile, we can dynamically make
the size of the crossbar as 8×8, 16×8, 24×8, or 32×8.

The main reason behind this tiled design is to limit the sneak path current for the memory operation. A large memristor
crossbar produces more sneak path currents, which introduces error in the memory read operation. The comparators at the
bottom of the tile arrays work as sensing circuits that provide output of the function implemented in the tile array. In an 8×8
memristor tile, we have 64 memristors and 16 transistors for isolation. Hence, on average, we have ¼ transistor for each
memristor in a tile.

4. Memory Operation
The proposed system uses a memristor in the crossbar to store a binary bit. The memory operation in the memristor-

based tiled array is similar to the technique used in [15]. The memristor conductance value σon represents bit 1, while the
conductance value σoff represents bit 0. Sneak path currents in a memristor crossbar may produce error in the read operation.
Sneak path current problem becomes worst when all the memristors in the crossbar are in the σon state. We used 8x8 memristor
tile arrays to implement a memory. For memory read operation, one tile is accessed at a time from a tile array, selecting the
appropriate pass transistors. This limits the sneak-path currents and makes sure that the data is read correctly. In Fig. 6, we
use the value of the Rs resistor of 0.4M ohms to increase the read noise margin. In an 8×8 memristor crossbar, the worst case
read voltage for data bit 1 is 110.15mV (voltage drop across Rs in Fig. 6). While the worst case read voltage for data bit 0 is
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46.09mV. These voltage levels demonstrate that we can read data from an 8×8 memristor array without any error. For the
memristor device published in [9], a 16×16 tile was producing read errors.

Input portOutput port
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Fig. 4: SRAM-based static routing switch. Each blue square (S) in the left part of the figure represents the 8x8 SRAM based 
switch shown in the right (assuming an 8-bit network bus).

Fig. 5: The block diagram of a memristor crossbar-
based tile array.
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Fig. 6: The schematic of a memristor crossbar-based tile array.

In the proposed system, for memory implementation, a tile array stores 1 block of data, which is 32 byte. A memory
address is divided into three parts: block number, tile number, and tile offset.  To access data from a memristor tile based
memory, the block address is decoded using memristor tile circuits. This task is similar to the implementation of a Boolean
function.  The implementation of a Boolean function on memristor tile array is explained in Section 7. Based on the tile
number and tile offset, data from the appropriate tile row is accessed.

5. Neuron Operation
Neural networks are widely used for classification applications. Neurons are the building blocks of a neural network. A

neuron performs the following two operations: i) dot product operation on its inputs and weights,  and evaluation of a
nonlinear function on the dot product. Fig. 7 shows a memristor based neuron circuit. For each input, both the data and its
complemented form are applied to the neuron circuit. In this design, logic low is represented by -1V, and logic high is
represented by 1V. The bottom of the crossbar column is connected to the gate input of the comparator. Note that no current
flows through the gate of a MOS transistor. Applying Kirchhoff’s current law, the potential at the bottom of the crossbar
column is expressed by Eq. (1). In this neuron circuit, the synaptic weight corresponding to the  input x1 is (σ1a - σ1b). The
output of the comparator at the bottom of the circuit represents the neuron output. This neuron circuit implements a threshold
activation function.

Vcol=
x1 σ1,a− σ1,b + x2 σ2,a− σ2,b +…+ xn σn,a− σn,b

σ1,a+ σ1,b+ σ2,a+ σ2,b+…+ σn,a+ σn,b
       (1)

Fig. 7: Memristor-based neuron circuit. x1, x2, …, xn are the inputs and yj is the output.

A neural network must be trained before it can be utilized. In ex-situ training [27], this process is carried out in software,
and the final trained weight values are then programmed into physical memristor crossbars. This method eliminates the need
for on-chip training circuitry, thereby reducing hardware complexity. Programming a memristor within a crossbar to either
its RON or ROFF resistance state is relatively straightforward—it involves applying a voltage of the correct polarity across the
device for a sufficient duration, without requiring iterative write cycles or intermediate read operations during programming
[32]. When a neural network is trained using only three discrete weight levels, it is referred to as a Ternary Neural Network
(TNN). The study in [33] demonstrated a memristor-based neural network utilizing ternary weights. The work in [28] showed
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the implementation of memristor-based neural networks using only the two extreme resistance states (RON and ROFF), while
still achieving higher weight precision. These types of neural networks could be implemented in the proposed system.

6. Search Operation
Content search is a common operation in many big data applications. This operation is similar to the string search or

string matching operation. For string matching, we want to find the appearance of an input string in a set of reference strings.
Fig. 8 shows the circuit for matching a single content based on the technique described in [23]. In this circuit, only two
conductance levels for the memristors are used (σon, σoff). Same as the neuron circuit, this design represents logic low by -1V,
and logic high by 1V.

This circuit essentially computes the dot product between the applied input voltages and the memristor conductances
within the crossbar array, which we refer to as weights. To match an input string or pattern of length n, each weight
corresponding to a normal (non-complemented) bit in the string is assigned the maximum positive value, w=(1/Ron-1/Roff) or
equivalently (σon - σoff) . In contrast, weights corresponding to complemented bits are assigned the maximum negative value,
-w. Therefore, for a perfect match, the dot product equals nw. If there is a single-bit mismatch, the result becomes (n−2)w.
To correctly identify a matching input, the dot product is compared against a threshold value of (n−1)w. The circuit shown
in Fig. 8 carries out this operation.

For a matching input,

Vcol=
n σon− σoff − (n − 1) σon− σoff

(2n − 1)(σon+ σoff)
Or, Vcol=

σon− σoff
(2n − 1)(σon+ σoff)

(2)

For an input with 1-bit mismatch from the reference string/pattern,

Vcol=
(n − 2) σon− σoff − (n − 1) σon− σoff

(2n − 1)(σon+ σoff)
Or, Vcol=

− σon− σoff
(2n − 1)(σon+ σoff)

(3)

Vref of the comparator is connected to ground and hence it is able to provide the correct string matching result as output.
Fig. 9 shows the memristor crossbar-based multiple string matching circuit proposed in [23]. In general, for matching m
strings of n-bit length, the circuit in Fig. 9 utilizes a (4n-2)×m memristor crossbar. Content search operation can be performed
in the proposed system based on the technique described above.
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Fig. 8: Memristor-based circuit for matching a 
single string described in [23].

Fig. 9: Memristor crossbar-based string matching circuit 
described in [23].

7. Boolean Function Implementation
A Boolean function can be implemented as a sum of minterms. Each mean term can be implemented in the memristor

crossbar circuit based on the technique used for the search operation. In this approach, each minterm is considered as a
reference string/pattern. Implementation of the logical OR operation is also similar to the string matching circuit. Consider
the weight w=(σon - σoff) for each input. If all the n inputs are low, the corresponding dot product will be –nw. If at least one
input is high, then the corresponding dot product will be greater than or equal to –(n-2)w. Thresholding the dot product at -
(n-1)w will provide the OR function output. Fig. 10 shows the implementation of a 3-input OR function based on a memristor
crossbar circuit.

Fig. 10: Memristor-based 3 input OR function circuit.
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4. Conclusion
This paper proposes a reconfigurable architecture based on memristor-crossbar tile. In a tile, there is on average ¼

transistor for each memristor for storage, which gives a significant area benefit compared to a 1T1M crossbar tile. A single
tile array could be configured for any of the following four operations: memory, search, neural network, and Boolean function
implementation. For these operations, we leverage the computation in memory feature of the memristor crossbar. Our future
work will compare the area and power consumption of the proposed system with those of an equivalent digital system.
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