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Abstract - Photovoltaic (PV) systems have gained significant attention as a sustainable energy source, but their efficiency is highly
dependent on environmental conditions. Under Partial Shading Conditions (PSC), multiple power peaks occur, making conventional
Maximum Power Point Tracking (MPPT) techniques ineffective. To address this, several nature-inspired optimization algorithms
have been developed, including Particle Swarm Optimization (PSO), Adaptive PSO, Cuckoo Search (CS), Flower Pollination
Algorithm (FPA), Grey Wolf Optimizer (GWO), Horse Herd Optimization (HHO), and Hybrid PO-PSO. This study presents a
comparative analysis of these algorithms in terms of tracking efficiency and robustness under dynamic shading patterns. PSO and
its adaptive variant show fast convergence but may suffer from local optima. CS and FPA offer improved exploration capabilities,
whereas GWO and HHO demonstrate better stability in complex landscapes. The Hybrid PO-PSO approach integrates the benefits
of PO and PSO, achieving enhanced performance. Simulation results validate the effectiveness of each algorithm in extracting the
maximum available power under different PSC scenarios. The analysis provides insights into the optimal selection of MPPT
techniques for improving the reliability and efficiency of PV systems.

Keywords: MPPT , Partial Shading, Optimization Algorithms, Particle Swarm Optimization, Cuckoo Search, Flower
Pollination, Grey Wolf Optimizer, Hybrid PO-PSO

1. Introduction
In [1], the study addresses PV efficiency under partial shading, highlighting multi-peak P–V curves. It notes boost

converter efficiency varies with input voltage, shifting the load’s MPP from the array’s. Simulations and experiments
validate power transfer analysis across shading patterns. The focus is on maximizing load power rather than array MPP.
In [2], a review targets PV parameter estimation and MPPT to boost energy conversion ratio (ECR). Analytical methods
falter due to singularity, and iterative ones struggle with dynamic conditions. Evolutionary algorithms (GA, PSO, DE)
excel by avoiding local minima. It advocates these for precise, swift parameter estimation under varying irradiation. In
[3], a two-diode PV model with four factors is proposed for PSC accuracy. It outperforms Neural Network, PO, and
single-diode models, especially at low irradiance. Real-time simulator data validates its precision for large-array
simulations. The model integrates seamlessly with MPPT and converters. In [4], MPPT algorithms are classified into
four groups: optimization, hybrid, modelling, and topologies. It reviews PV modelling, array setups, and controllers for
PSC system design. Each approach’s trade-offs are outlined concisely. The work serves as a practical reference for PV
professionals. In [5], 62 MPPT algorithms are detailed across seven categories, including 25 meta-heuristic types. These
are subdivided into biology-, physics-, and sociology-based methods. It provides a granular, application-specific guide
for PSC optimization. The review is a comprehensive resource for tailored PV solutions.

 In [6], the study examines PV module behaviour under PSC, noting multiple local MPPs and one global MPP. It
compares PSO and CS against the conventional INR-based tracker using MATLAB simulations. Results show PSO and
CS ensure global MPP convergence, with CS outperforming PSO by reducing tracking time across all shading patterns.
This highlights CS’s superiority in optimization efficiency for PSC. In [7], a hybrid MPPT for large PV schemes at PSC
integrates PSO for initial tracking with PO for final stages. Simulated across two PV configurations and validated
experimentally via microcontroller, it achieves faster global MPP convergence than standalone PSO or PO. The method
also minimizes oscillations in power, voltage, and current, enhancing stability. In [8], a review focuses on improving
conventional MPPT methods (PO, hill climbing, incremental conductance) for global MPP tracking under PSC. This
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provides a comparative framework for selecting optimal MPPT techniques. In [9], the study addresses PSO’s limitations
in tracking global MPP under dynamic PSC, where shading changes affect peak location and value. It proposes
reinitializing particles for sudden changes and a novel adaptive strategy for gradual shifts, unaddressed in prior literature.
Results validate the strategy’s ability to consistently catch the global peak. This introduces a pioneering approach to
adaptive metaheuristic tracking. In [10], the work explores PSC impacts on building-integrated PV systems (BIPVPS),
deeming traditional MPPT inadequate. It introduces the FPA for global MPP tracking, validated across shading
arrangements and assessed with differential evolution and PSO. FPA excels in precision and performance, offering a
robust solution for BIPVPS optimization.

 In [11], a new MPPT procedure employing FPA method enhanced with Levy flight is proposed to tackle multi-
peak P–V curves under partial shading. Implemented in MATLAB, it outperforms two established MPPT methods in
tracking speed and effectiveness. The method quickly adapts to environmental changes, ensuring global MPP
convergence. This underscores FP’s potential with advanced convergence mechanisms. In [12], the HHO, inspired by
horse herd behaviour, is introduced to maximize PV output under partial and complex shading. Compared to P44O,
Adaptive ACS, PSO, and Dragonfly Algorithm (DA), HOA excels in computational efficiency, fast convergence, and
zero oscillations. It outperforms conventional methods across varied weather conditions. This highlights HOA’s
robustness for dynamic shading scenarios. In [13], the failure of the PO procedure under PSC, where multiple peaks
emerge, is analyzed. A new HHO procedure is presented to trace the global peak, validated via MATLAB simulations
of PV’s characteristics. HH’s efficacy is compared with other optimization methods, proving superior global peak
tracking. This emphasizes HH’s role in overcoming PO’s limitations. In [14], a hybrid MPPT merging PSO and PO is
proposed for PV schemes under uniform and PSC, modelled in PSIM software. Compared to classical PO, standard
PSO, and PO-PSO hybrid, it achieves better tracking than standard PSO and extracts 0.3% more power than PO-PSO.
The method ensures global MPP under diverse conditions. This demonstrates the value of hybrid optimization for
efficiency gains.  In [15], a hybrid MPPT merges stochastic PSO with deterministic hill climbing for PV systems under
partial shading. PSO optimizes dynamically, with hill climbing refining the best particle’s position and a re-
randomization mechanism placing five particles strategically. This enhances global MPP tracking in shaded conditions.
The approach balances exploration and precision effectively.

PSC in PV systems introduce multi-peak P–V curves, complicating MPPT . Various MPPT procedures extending
from traditional methods like PO to developed evolutionary procedures such as PSO, CS, FPA, and HHO, as well as
hybrid approaches—each exhibit distinct merits and demerits. While conventional methods struggle with local optima
and slow convergence, metaheuristic algorithms excel in global MPP tracking but may face issues like computational
complexity or tracking delays under dynamic shading. Hybrid methods aim to balance speed and accuracy but vary in
stability and efficiency. This paper compares the working of these diverse MPPT techniques under PSC, analyzing their
effectiveness in terms of tracking speed, accuracy, convergence to the global MPP (GMPP), and stability. By evaluating
their strengths and limitations, the study aims to determine which MPPT method performs best under PSC, providing a
clear guide for optimizing PV system efficiency in real-world shading scenarios

2. System Description
A PV module with a Boost regulator and MPPT Control is represented in the Fig.1. To produce DC voltage and 

current, the PV module is made up of many PV panels linked in series and parallel. The MPPT algorithm block 
receives the PV array parameters, which include Vpv, Ipv, irradiance (G), and temperature (T). It uses a number of 
optimization strategies, including PSO, Adaptive PSO, CSA, FPA, GWO, HHO, and Hybrid PO-PSO. The MPPT 
procedure's goal is to maximize power extraction across a range of weather changes by dynamically vary the boost 
regulators duty cycle to assure the PV system runs at its maximum power point (MPP).

The PV modules voltage is increased by the boost regulator, a power conversion circuit, before it is sent to the load.
For energy storage and voltage control, it is made up of an inductor, a switch (S), diode  and a capacitor (C). The MPPT
method provides the PWM generator with the ideal duty cycle, which it uses to manage power conversion effectively
by controlling transistor (S) switching. The load receives the boost converter's processed DC output, guaranteeing steady
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and improved energy supply for a range of uses, including freestanding loads, grid-connected systems, and battery
storage.

Fig.1 Overall representation of the system

2.1 PV Modelling
The most often used mathematical description of the PV cell is the single diode model. Because it is efficient and

offers a good balance in accuracy, this is taken into consideration for PV system modelling in this work. Fig. 1 shows
this model's corresponding circuit.

Fig.2 PV Cell’s representation
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The PV cell's  current is displayed below:

I = IL − ID − V + RsI
Rp

  (1)

Where,

ID = Is exp V + RsI
Vta

− 1   (2)

I = IL − Is exp V + RsI
Vta

− 1 − V + RsI
Rp

  (3)

Where, Vt = kT / q
The following equation states that the photocurrent of a photovoltaic cell is proportional to sun irradiance and is

additionally affected by temperature,

IL = (ILn + Ki ∆ T) G
Gn

  (4)

The diode saturation current Is is given by

Is = Isn
Tn
T

3exp
qEg
ak

1
Tn

− 1
T   (5)

Isn = Iscn

exp
Vocn
aVtn

− 1
  (6)

The Rs (series ) and Rp (parallel resistance) in equation (1), are determined iteratively by aligning the model’s
calculated maximum power with the datasheet’s peak power at the MPP. By varying voltage (V) from 0 to Vocn/Ns and
solving equation (1) numerically, corresponding current (I) values are obtained. The P–V curve for the module is then
derived by multiplying the voltage (V) by Ns (series-linked  cells) and the current (I) by Np ( parallel-linked  cells). 

2.2 Partial Shading in PV Modules
PSC occur when some PV modules in an array receive different levels of irradiance  due to obstacles like clouds,

buildings, trees, or dirt accumulation. Unlike uniform shading, PSC runs to multiple power peaks in the P-V curve,
making it challenging to trace the MPP. This happens due to  shaded solar cells generate less current than unshaded
ones, causing bypass diodes to activate and alter the  characteristics of the array. As a result, conventional MPPT
methods often get stuck in local maxima, reducing the overall power output and system efficiency. To address this issue,
advanced MPPT techniques based on intelligent optimization algorithms are employed, ensuring efficient power
extraction under dynamic and complex shading patterns. The shading pattern is analysed with two cases , Case-1 PSC
Pattern-1, (1000 W/m2, 300 W/m2,600 W/m2), Case-1 PSC Pattern-1, (700 W/m2, 200 W/m2,900 W/m2).
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Fig.3 Different cases of shading patterns

Fig.4 Characteristics of PV during Partial shading

3. MPPT Algorithms
The Following MPPT in this work are considered to analyse the PV module during partial shading conditions

3.1 PSO
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PSO, a population-based evolutionary algorithm, excels in solving multi-peak engineering optimization problems,
outperforming other methods in extracting global MPP under PSC. Its advantages include simplicity, ease of
implementation  and adjustable  control variables. PSO employs a swarm of particles looking for the best outcome,
drawing inspiration from bird behaviour. Based on its own and other people's experiences, each particle modifies its
speed, exchanging data to maximize. Using current position, velocity, and ranges to Pbest and Gbest, particle migration
adheres to a straightforward rule. Gbest is the best solution for the swarm, whereas Pbest is the finest outcome for a particle.
In this case, PV output power acts as the fitness function, while particle location stands in for converter duty cycle.

dk + 1
i = dk

i + vk + 1
i   (7)

vk + 1
i = wvk

i + c1r1 Pbest − dk
i + c2r2(Gbest − dk

i )  (8)

Where, vi represents the velocity component while w signifies the inertial weight. c1 and c2 act as coefficients,
whereas r1 and r2 are random values.  

3.2 Adaptive PSO (APSO)
The PSO algorithm needs strong global search capabilities early on to avoid local optima and precise local search 

abilities later for better accuracy. Particles should start widely dispersed to explore more areas. an APSO algorithm 
with an adaptive strategy, featuring an asynchronous learning factor and an adaptive inertia weight factor. The initial 
positions of four particles are set uniformly between 0.1 and 0.7.

ω =
ωm −

ωmax − ωm f − fmin
favg − fmin

,f ≤ favg

ωmax,f > favg
   (9)

Here, f is the particle’s current fitness, ωmax (0.6) is the inertia weight upper limit, ωm (0.3) is a specific inertia
weight, favg and fmin  average & minimum fitness.

Asynchronous Learning Factors 
In PSO, c1 (individual learning factor) shows how particles learn from their own paths, while c2 (social learning

factor) reflects learning from the group. High c1 in traditional PSO causes slow convergence and local wandering, while
high c2 leads to premature convergence to local optima. Fixed c1 and c2 values struggle to balance local and global
search. In APSO, c1 starts large for individual exploration and decreases, while c2 starts small and increases for group-
based accuracy later.

c1 = c1min + c1max.cos iter.π
2.itermax

  (10)
c2 = c2min + c2max.sin iter.π

2.itermax
  (11)

In (9) and (10), c1max  & c1min is upper and lower limit of the c1, iter.π  & itermax  is the  index, and upper  bound.

Convergence Condition and Restart Condition 
APSO stops iterating when the distance between any two particles is below 0.003, enabling fast convergence to the

MPP without hitting the iteration limit. In dynamic partial shading, changing irradiance requires reinitialization if light
intensity shifts rapidly, as current particle positions and velocities become outdated. Restarting APSO finds a new
maximum power point (MPP) when ∆ P exceeds 1%.

∆ P =
P1 − P

P   (12)
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In (12), P & P1  are the power output before restart &  power after PV irradiance change.

3.3 Cuckoo Search
The optimization method  CS is centered on the parasitic breeding approach used by cuckoo birds. It has been 

observed that a cuckoo species employ in brood parasitism, which entails laying eggs in other birds' nests (host birds). 
Lévy's Flight Locating a applicable host bird's nest is crucial for cuckoo reproduction. The search for food, which

occurs at random & it  is typically analogous to the search for the nest. Generally speaking, animals follow trails or
curves that may be described by numerical functions when they are hunting. The Lévy flight is one of the most often
used models. This approach for optimization problems makes advantage of this feature. In CS, levy flying is often used
to explain how cuckoos locate their nests. In mathematical terms, a Lévy flight is a arbitrary walk-in with step sizes
determined by a power law derived from the Lévy distribution. 

y = l − λ  (13)

Where k is the variance and l is the flight time. The variance of y is infinite since l < k < 3. The stages are composed
of several little steps and, occasionally, large-step, long-distance jumps according to the Lévy distribution. 

In certain situations, especially for multimodal, nonlinear problems, these big hops may significantly increase the
search effectiveness of cuckoo search when compared to alternative meta-heuristic processes. 

(1) Cuckoos deposit their eggs in a nest that is chosen at random, one at a time.
(2) The next generation will inherit the nicest nest and the highest-quality eggs. 
(3) A fixed number of nests exist, and the host bird has a probability Pa  (where 0<Pa <1) of detecting cuckoo eggs.

If a cuckoo egg is detected, the host bird will either throw it away or abandon the nest and build a new one. This action
generates a new solution. A new result x(t + 1)

i for a cuckoo, the Lévy flight is moved out using the following equation.

x(t + 1)
i = xt

i + α ⊕ Levy(λ)  (14)

For a given sample number i and number of repetitions t, the step size α>0influences the adjustment of samples or
eggs xt

i . Appropriate adjustments are necessary to meet optimization restrictions and get the desired step size, frequently
by using the formula given in Equation (14)

α = α0(x t
j − x t

i )  (15)

The initial step change is represented by α0 . Equation (15) calculates the next step size built on the variation among
the two samples. The formula of Lévy (k) is obtained by equation (16).

Levy λ ≈ u = l − λ, (1 < λ < 3)  (16)

Relevant factors is  selected for the search in order to retain CS to build MPPT. In this instance, the samples are
given as the PV voltage values, n represents the samples. New voltage samples are created when the Lévy flight is
finished.

V(t + 1)
i = Vt

i + α ⊕ Levy(λ)  (17)

Where α = α0(vbest − vi),  A streamlined levy distribution scheme is offered as
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s = α0(vbest − vi) ⊕ Levy(λ) ≈ k × u
v 1

β
(vbest − vi)   (18)

u ≈ N 0,σ2u       v ≈ N 0,σ2v            (19)

The changing σu and σv are distinguished as

σu = Γ(1 + β) × sin (π × β / 2

Γ 1 + β
2 × β × 2

β − 1
2

 and σv = 1  (20)

It operates by sampling power at different voltage levels and selecting the highest power as the best sample. The
remaining samples, except the best one, have a probability Pa  of being discarded and replaced with new random samples.
This process continues with re-evaluation of power and calculation of the objective function J until all samples converge
to the MPP.

3.4 Flower pollination
 This procedure is based on how pollination occurs in flowers. As is well known, pollination is a physiological

process that occurs naturally during plant mating. It has to do with pollinators, such as insects, spreading pollen. The
two primary forms of pollination are thought to be self and cross pollination. When pollen from one bloom fertilizes
another, this is known as self-pollination. Conversely, when pollen grains are moved from one plant to another, it is
known as cross-pollination. From a different perspective, flowers use a variety of strategies to disperse their pollen.
Abiotic pollination is the first technique, in which the wind facilitates the spread of pollen. Biologic pollination, which
occurs through insects and animals, is the second technique.

The continued existence of the fittest is the primary objective of floral pollination, according to the theory of
biological evolution. Furthermore, as well as to the fittest, the optimal number of plants should be reproduced should be
regarded as a significant goal. This might be seen as a plant species optimization technique. The following four
guidelines need to be considered when designing and developing the FPA algorithm:

1. Pollen-carrying pollinators may travel great distances in accordance with Lévy flights, thus biotic and cross-
pollination are measured to be global pollination processes.

2. Both self and biotic pollination have been regarded as local pollination.
3. A reproduction chance that is proportional to the resemblance of the 2 flowers implicated is said to be analogous

to floral constancy.
4. Switch probability has been used to adjust the switching among local and global pollination.
As fellows, the mathematical models may be derived from earlier rules.
The following mathematical equation may be used to represent the global pollination 

xt + 1
i = xt

i + γL(λ)(g * − xt
i)  (21)

L ≈
λΓ λ sin πλ

2
π

1
s1 + λ(s ≫ s0 > 0)  (22)

The following is a mathematical representation of the second and third principles for local pollination.

xt + 1
i = xt

i + ∈ (xt
j − xt

k)  (23)

Where xt
j , xt

kare pollen from different flowers. If xt
j  and xt

k are picked from a uniform distribution in [0,1], then this
likewise turns into a local random walk if they are members of the same species or population. Activities related to FPA
can occur at many sizes, including local and global.  The ideal duty cycle that corresponds to the PV system's global
MPP is extracted.
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3.5 Grey Wolf
This procedure mimics the hunting manners and leadership chain of command of grey wolves to resolve

optimization issues. The hierarchy comprises of 4 types of wolves:  (α) representing the best solution, (β) as the 2nd-
best,  (δ) as the third, and  (ω) representing the rest of the population. The optimization process involves 3 major steps:
searching, encircling, and attacking the prey, where α leads the hunt, followed by β and δ, while ω supports the pack.
This strategy is effectively applied in MPPT for PV modules to optimize power extraction under dynamic conditions.
To mitigate fluctuations, the GWO is employed to maintain a constant duty cycle at MPP. 

The following equation is used to simulate the entire grey wolf hunting method as explained above.

E⃗ = C⃗.Xp⃗ t − Xp⃗ t   (24)

X⃗ t + 1 = Xp⃗ t − F⃗.E⃗  (25)

In this case, t stands for the current repetition, and the coefficient vectors are given by E, F, and C. The hunting
prey's position vector is represented by Xp, while the GW vector is shown by X. The following is how the vectors F and
C are calculated:

F⃗ = 2a⃗.r1⃗ − a⃗  (26)

C⃗ = 2.r⃗2   (27)

To mitigate fluctuations and losses present in traditional MPPT procedures, the d is normalized at MPP to a constant
value. The d is regarded as the gray wolf in the GWO MPPT implementation. 

di k + 1 = di k − F.E (28)

P dk
i > P(dk − 1

i )  (29)

In this case, P is the power, i for the number of individual GW that are currently in existence, and k for the number
of iteration.

3.6 Horse Herd optimization
To make the HHO  function, the behaviour of horses in their natural environments is investigated. In their behaviour

(F), horses commonly exhibit grazing (A), defensive mechanisms (D), socialization (C), hierarchical (B), and imitation
(E). The transfer given to horses at each repetition is stated in equation (30).

Ziter,AGE
i = Siter,AGE

i + Z iter − 1 ,AGE
i ,AGE = α,β,γ,δ (30)

 The precise position of the ith stallion is shown by Ziter,AGE
x  ,the stallion's age range is displayed by AGE, and the

current replication is represented by Iter. Siter,AGE
i   illustrates the velocity vector of horse. Horses  specified by α, β, γ,

and δ, respectively based on their age.
This constant feeding pattern is referred to as "continuous eating." In pastures, you could see mares grazing with

their young. Using a grass coefficient, the HOA approach determines how much grazing space each horse needs. A
particular formula may be used to describe the grazing behaviour of horses of various ages that are observed grazing in
pastures.
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Aiter,AGE
i = ai

iter,AGE × U + R × L × Z(iter − 1)
i , AGE = α,β,γ,δ (31)

ai
iter,AGE = ai

(iter − 1),AGE × wa (32)

The HHO is inspired by the grazing and hierarchical behaviour of wild horses,  where their movement is influenced
by a motion parameter wa and a random factor R ranging from 0 to 1, causing non-linear movement per iteration. In
nature, horses follow a leader, typically an experienced mare or stallion, demonstrating a clear hierarchical structure.
This leadership tendency is represented by a coefficient h in HOA, reflecting the herd's inclination to follow the brightest
and most qualified horse. Studies on horses aged five to fifteen validate this hierarchical behaviour, which is effectively
utilized in optimization processes

Biter,AGE
i = biter

iter,AGE × Z(iter − 1)
* − Z(iter − 1)

i , AGE = α,β,γ (33)

bi
iter,AGE = bi

(iter − 1),AGE × wb (34)

Biter,AGE
i  shows how the superior horse position has a large effect on the velocity parameter, while Z(iter − 1)

*  disp
shows where the best horse is actually located.

Horses live among other creatures, often sharing homes, which exposes stallions to predators but offers herd
security. Pluralism aids survival and independence. Their social nature sparks frequent fights, while excitability reflects
individuality. Some horses prefer companionship with cattle and sheep over isolation, gravitating toward the herd's
center. Young horses are notably sociable, aligning with the phrase "particularly gregarious."

Citer,AGE
i = citer

iter,AGE × 1
N∑N

k = 1Z(iter − 1)
k − Z(iter − 1)

i , AGE = β,γ (35)

ci
iter,AGE = ci

(iter − 1),AGE × wc (36)

The ith  social velocity vector is Citer,AGE
i  , whereas the coordination of the ith iteration with the herd is reflected in

ci
iter,AGE. It  falls by a wcfactor with each iteration. The lifelong tendency of a young horse to imitate its elders is

represented by the following equation:

Eiter,AGE
i = eiter

iter,AGE × 1
pN∑pN

k = 1Z(iter − 1)
k − Z(iter − 1)

i , AGE = γ (37)

ei
iter,AGE = ei

(iter − 1),AGE × we (38)

Horses react to predators with a fight-or-flight response, preferring to flee but bucking if trapped. They protect their
territory from threats like foxes. Their defence prevents encounters with other horses in the HOA operation, and factor
d is essential. They either run away or remain steadfast when threatened. By avoiding mispositioning, the algorithm's
negative coefficient guarantees safety.

Diter,AGE
i = − diter

iter,AGE × 1
qN∑qN

k = 1Z(iter − 1)
k − Z(iter − 1)

i , AGE = α,β,γ (37)

di
iter,AGE = di

(iter − 1),AGE × wd (39)

Where the ith stallion's outflow vector, Diter,AGE
i   is calculated by averaging the placements of the Z(iter − 1)

k  vector.
The entire amount of horses in the most severe case is also included in QN. According to different estimates, 20% of all
horses are q. The factor of a decrease is denoted by wd.
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Horses graze for hours, shifting between pastures. Though often stabled, they wander to explore, driven by curiosity
and aided by sidewall observation. In modelling, this is represented as arbitrary behaviour times factor r. Wandering
starts young and grows with maturity.

Fiter,AGE
i = fiter

iter,AGE × 풫 Z(iter − 1)
i , AGE = γ,δ (40)

fi
iter,AGE = fi

(iter − 1),AGE × wf (41)

For local search, Fiter,AGE
i   represents the ith horse's arbitrary velocity vector, whereas wfdenotes a decreasing factor

of fi
iter,AGE each cycle.
The age-specific horse velocity vector using the following formula.

Siter,α
i = Aiter,α

i + Diter,α
i (42)

Siter,β
i = Aiter,β

i + Biter,β
i + Citer,β

i + Diter,β
i (43)

Siter,γ
i = Aiter,γ

i + Biter,γ
i + Citer,γ

i + Eiter,γ
i + Diter,γ

i + Fiter,γ
i (44)

Siter,δ
i = Aiter,δ

i + Eiter,δ
i + Fiter,δ

i (45)

3.7 Hybrid PO-PSO
The Hybrid PO-PSO MPPT process reduces steady-state oscillations and improves tracking efficiency by

combining the benefits of both approaches. The algorithm functions in two primary stages:
Initial Global Search Using PSO: The MPP is initially explored throughout a broad range using the PSO

algorithm. A swarm of particles is started with arbitrary placements and velocities, each of which represents a potential
duty cycle of the converter. Using velocity and position update equations, the particles update their positions according
to the Gbest and their individual best-known Pbest. The system is swiftly guided to an ideal area of the power curve by this
global search.

Fine-Tuning Using PO: The PO procedure takes over for local refining when PSO finds a near-optimal operating
point. PO monitors the variation in power output that effects from perturbing the duty cycle. The perturbation proceeds
in the same direction if the power increases; if not, it reversals. This adjustment enhances steady-state performance and
reduces power oscillations.

4. Simulation Results & Discussions
The simulation of the comparative assessment is carried out in 2 cases in MATLAB considering the different

irradiance pattern

4.1 Case-1 Partial shading Pattern-1 (PSC-1 1000 W/m2, 300 W/m2,600 W/m2) 
Fig.4 represents the power output of a PV modules under PSC-1 using different MPPT procedures. The primary

goal of these algorithms is to trace the GMPP and obtain the  possible power from the PV array despite shading effects.
In this case the GMPP is 104.5W. It can be observed that each algorithm has a different response time and power tracking
efficiency. Some algorithms exhibit higher fluctuations and slower convergence, while others demonstrate faster
convergence to the MPP with minimal oscillations. Among these procedures, the Hybrid PO-PSO shows superior
performance by quickly converging to the maximum power point with minimal power loss. This indicates that the
Hybrid PO-PSO approach is more effective in handling the complex power curves caused by partial shading conditions,
ensuing in a higher and more stable power  from the PV module. The Load power obtained at PSC-1 is shown in Fig.5.
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Fig.4 Comparison of PV Powers at PSC-1

Fig.5 Comparison of Load Powers at PSC-1
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Table.1Tracking Efficiency, PV&  Load Power at PSC-1

MPPT PV Power 
Obtained 

(W)

Tracking 
Efficiency(%)

Load 
Power

(W)
PSO 103.5 99.04 100.6

APSO 93.4 89.46 90.8
CS 104 99.52 101.1

FPA 104.4 99.90 101.5
GWO 100.3 95.98 98.46
HHO 104.3 99.81 101.3

Hybrid PO-
PSO

104.5
100

101.5

Table 1 presents the performance comparison of various MPPT under PSC-1. The Hybrid PO-PSO method achieves
the highest tracking efficiency (100%) and PV power output (104.5 W), followed closely by FPA and HHO with tracking
efficiencies of 99.90% and 99.81%, respectively. The CS and PSO methods also perform well, with efficiencies above
99%. In contrast, APSO records the lowest efficiency 89.46%, resulting in lower PV and load power outputs. This
indicates that Hybrid PO-PSO is the most effective approach under PSC-1, ensuring maximum power extraction and
delivery to the load.

4.2 Case-2 Partial shading Pattern-2 (700 W/m2, 200 W/m2,900 W/m2)
The results of  PV scheme under PSC-2 using various MPPT a procedures. In this case the GMPP is 119.5W It is

observed that different algorithms exhibit varying performances considering the tracking efficiency. Some algorithms
effectively track the GMPP, resulting in higher and more stable power outputs, while others show slower convergence
or remain stuck at an LMPP. In this case, the FPA algorithm fails to track the GMPP and remains trapped in a local
maximum, leading to significantly lower power extraction compared to other algorithms. This behaviour highlights the
limitation of the FPA algorithm under complex PSC , where multiple peaks in the power curve exist. The Hybrid PO-
PSO exhibits superior performance by rapidly converging to the GMPP with minimal oscillations, ensuring maximum
power extraction under shading conditions. Other algorithms such as PSO, APSO, and HHO also demonstrate good
performance but show relatively higher power fluctuations during the tracking process. The Load power obtained at
PSC-1 is displayed in Fig.7.
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Fig.6 Comparison of PV Powers at PSC-2

Fig.7  Comparison of Load Powers at PSC-2
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Table.2 Tracking Efficiency, PV&  Load Power at PSC-2

MPPT PV Power 
Obtained 

(W)

Tracking 
Efficiency(%)

Load 
Power

(W)
PSO 119.4 99.92 116.3

APSO 117.3 98.16 114.1
CS 112.1 93.81 108.9

FPA 54.3 45.44 52.76
GWO 100.3 83.93 98.4
HHO 119 99.58 115.7

Hybrid PO-
PSO

119.3
99.83

116.1

Table 2 compares the MPPT techniques under PSC-2. Hybrid PO-PSO, PSO, and HHO demonstrate the highest
tracking efficiencies, exceeding 99%, ensuring optimal PV power extraction near 119 W. APSO also performs well with
98.16% efficiency. However, methods like FPA and GWO show significantly lower tracking efficiencies (45.44% and
83.93%, respectively), leading to reduced power output. The results highlight that Hybrid PO-PSO maintains superior
performance across different shading conditions, achieving near-optimal power extraction and delivery compared to
other MPPT procedures

5. Conclusion
The Hybrid PO-PSO MPPT exhibits superior working in tracing the MPP under PSC. By integrating the PO method

with PSO, this hybrid approach effectively links the fast local tracking capability of PO with the global search ability of
PSO. This ensures accurate and efficient MPP tracking while minimizing power losses and steady-state oscillations.
Under PSC-1 (irradiance: 1000 W/m², 300 W/m², 600 W/m²), Hybrid PO-PSO achieves the highest tracking efficiency
of 100%, extracting 104.5 W of PV power and delivering 101.5 W to the load. In PSC-2 (irradiance: 700 W/m², 200
W/m², 900 W/m²), the algorithm maintains a high tracking efficiency of 99.83%, successfully extracting 119.3 W of PV
power and delivering 116.1 W to the load. These results confirm that Hybrid PO-PSO consistently finds the GMPP
faster than other algorithms while avoiding local maxima. The key advantage of Hybrid PO-PSO lies in its ability to
rapidly respond to dynamic shading conditions and track the optimal power point with high accuracy. Unlike
conventional MPPT methods, which may suffer from slow convergence or local optima trapping, The comparative
analysis of MPPT procedures under PSC provides valuable insights into the strengths and limitations of different
procedures.
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