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Abstract - Modern power networks face both opportunities and problems from the quick adoption of electric vehicles (EVs) and
the growing use of non-conventional resources. To keep the grid stable, controlling peak demands and making sure energy is
distributed efficiently provide a significant challenge. By enabling bidirectional power transfer between EVs and the grid, vehicle-
to-grid (V2G) technology provides a workable option. As a result, EVs become mobile energy storage devices that may optimize
energy consumption and lessen grid stress by recharging during off-peak hours (load shifting) and discharging electricity during
peak demand (peak shaving). This study suggests a Deep Neural Network (DNN)-based Demand Side Management (DSM) approach
for a grid-connected V2G energy storage system. By training the DNN to forecast short-term power use and user behaviour, EV
charging and discharging cycles may be controlled in real time. Through advanced V2G operations, the model ensures optimal
energy exchange by considering criteria including EV availability, battery State-of-Charge (SOC), grid load patterns, and power
price. MATLAB/Simulink simulation results with various residential and business load profiles over a 24-hour period show how
successful the suggested approach is. Peak grid power peaked at 166.5 kW without DNN management, however peak shaving based
on DNN lowered this to 100 kW. The demand was further spread using load shifting, which produced a smoother load curve. The
suggested DNN-based DSM strategy is a viable option for next-generation smart grids as it greatly improves grid stability, lowers
operating costs, and makes it easier to integrate renewable energy.

Keywords: Deep Neural Network, Demand Side Management, Electric Vehicles, Grid-Connected System, Load Shifting, Peak
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1. Introduction

Modern power networks are increasingly integrating non-conventional resources and EVs, which has led to the
necessity for advanced DSM techniques. EVs may function as storage devices or V2G, technology, which permits
bidirectional energy transfer between EVs and the grid. Energy from EVs sent to the grid at high demand (peak shaving),
and charging can be planned for times of low demand (load shifting). This boosts the use of input resources, lowers peak
demand pressure, and greatly improves grid stability. By facilitating services like peak shaving, frequency management,
and voltage stability, EVs' participation in V2G frameworks highlights their potential to act as dynamic grid support
systems. Because V2G provide bidirectional flow, EVs return stored power to the grid at high demand, easing pressure
and improving both the environment and the economy. In addition to highlighting its benefits like lower grid stress and
cost savings, a thorough analysis of V2G for peak shaving also highlights its drawbacks, such as battery deterioration
and inconsistent user engagement, and offers suggestions to enhance deployment [1].

EV aggregators with V2G capabilities are included into an optimization-based approach for load shifting in grids
to flatten demand curves. Tested on an IEEE 37-bus distribution grid, this model highlights the flexibility of V2G in
demand response by demonstrating efficient load shifting and congestion management driven by hourly energy price
signals [2]. V2G applications in microgrids and public infrastructure further show how effective they are in controlling
peak demands. EV charging and discharging schedules are optimized using an algorithm created for public facilities to
reduce peak loads while taking user mobility requirements and battery state-of-charge limitations into account. Better
use of non-conventional resources is made possible by the algorithm, which has been tested in three parking situations
and validates that V2G efficacy varies on EV numbers and parking length [3].
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Peak shaving is improved by a user-friendly V2G scheme that provides both centralized and decentralized operating
phases, tailoring techniques to the individual preferences of each EV user. In China, a case study demonstrates that
global and split schedule optimization models lower charging expenses, resulting in a 5.89% reduction in peak power
use as compared to traditional charging [4].

To optimize grid operations and offer more peak shaving and load balancing, an adaptive control approach for PEV
charging/discharging was tested on a residential transformer with 1,000 customers. It uses real driving data to
dynamically update reference operating points [5]. V2G facilitates peak shaving and valley filling scenarios by use of
advanced EMS. When used on a grid-linked microgrid with module and EV charging stations, a tree-based decision
method optimizes EV charging and discharging to smooth load curves. Utilizing changes in power prices and user
lifestyle habits, the system efficiently fills off-peak times and lowers peak demand when tested with varying industrial
and residential loads [6].

Peak shaving is optimized using a two-stage V2G control technique that first determines the target peak reduction
levels offline using PEV mobility models and load projections, then modifies the discharging rates in real time. This
method, which has been tested on a residential distribution transformer using actual PEV mobility data, reduces
computing complexity and provides competitive peak shaving performance when compared to ideal alternatives. It also
addresses the effects of nighttime load through offline charging scheduling [7].

With an adaptive modified multi-objective whale optimization method optimizing network effects and costs for
both EV users and utilities, EV integration with PV modules reduces grid reliance. The model's practical effectiveness
is validated by simulations that use actual EV travel patterns, which provide better load profiles, voltage stability, and
lower energy losses [8]. By giving precedence to charging EVs with low SOC and discharging during high loads, an
optimum priority-based V2G scheduling method reduces grid load variation. It balances grid and customer demands by
reducing peak-to-off-peak load variance from 5 MW to 1.5 MW in a commercial-residential region with 1,300 EVs [9].

Environmental advantages and the integration of renewable energy are also supported by V2G systems. V2G offers
up to 700 MW (11% of linked EV capacity) for peak shaving in a Latvian power system case study, lowering CO:
emissions by about 100 kg per passenger car and showing great promise for sustainable grid operations [10]. Concerns
regarding deterioration are raised by the increased battery cycling in V2G services, though. Calendar aging's impact on
lithium inventory loss is highlighted in research that uses a physics-based digital-twin model to compare the advantages
of V2G against battery lifetime. According to the results, environmental temperature and battery chemistry have a crucial
role in determining V2G compatibility [11].

A coordination technique for numerous EV aggregators was tested on IEEE 13-node and Seoul distribution
networks to ensure EVs can support peak shaving and valley filling while meeting driving demands. To smooth load
profiles, it employs upper-level linear power distribution and lower-level min-max optimization [12].

DNNSs have demonstrated great potential in the prediction and optimization of intricate, nonlinear systems, such as
patterns of electricity consumption. A DNN-based DSM model is created in this situation to forecast changes in demand
and adjust the EVs' charge/discharge schedule appropriately. The model carries out peak shaving through coordinated
V2G operation and intelligently adjusts loads by learning past consumption patterns and grid behaviour. This strategy
guarantees energy efficiency, lessens grid congestion, and promotes a more intelligent and robust grid architecture.

2. Proposed Grid connected EV system

EVs act as dynamic energy storage linked to the main power grid in a V2G integrated power distribution system,
as shown in Fig. 1. To transmit energy at a feasible low voltage to different consumer loads, a step-down transformer
(34.5/0.4 kV) receives power from the main grid, which has a 154 MW capacity at 34.5 kV. In order to show how power
is supplied to local households and companies, these loads are divided into residential and commercial sectors (Load-1
through Load-5).

The EV battery system is linked to the grid via an AC/DC converter. To charge the EV battery, the converter
converts grid-supplied AC into DC, and vice versa. Stable DC voltage and seamless energy exchange are ensured by
the DC link capacitor between the converter and the EV battery. The bidirectional flow, in which the EV battery may
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release energy back into the grid during times of high usage and the grid recharges the battery during off-peak hours, is
the fundamental component of V2G operation. The energy feedback loop is represented by the dashed magenta arrow

above, emphasizing how EVs improve grid flexibility, load balancing, and peak shaving by acting as both distributed
energy sources and consumers.
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Fig. 1: Proposed System Architecture

2.1. Peak Shaving

Two essential features of V2G systems are peak shaving and valley filling, which work to flatten the load curve by
lowering the peak energy demand and making use of the extra capacity during times of low demand. By boosting
electricity consumption during off-peak hours, which are usually when energy demand and costs are very low and are
sometimes referred to as the "valley" of the load curve, valley filling is a demand-side energy management technique
that supplements peak shaving. This operational approach increases the utilization rate of base load generation during
off-peak hours and reduces the requirement for extra power generation during peak hours. Because V2G delays the
installation of new generating units and related infrastructure and lowers the need for peak load, power production
businesses gain a great deal from this process. Delaying investments in transmission and distribution infrastructure also

helps grid operators. However, grid operators and EV customers bear the majority of the expenditures associated with
the V2G deployment.

2.2. Benefits for EV owners

There are two main costs for EV customers to contribute in V2G. the price of charging during off-peak hours. the
expense of battery deterioration brought on by repeated cycles of charging and draining. Let's allow daily discharge
(kWh) to be denoted by £, , battery depth-of-discharge by 6, battery cycle life by Ly, discharge efficiency by 1 dis’
daily driving distance by R , and vehicle efficiency (km/kWh) by 7_,. The capacity for daily discharge is thus provided
by

R
c.6——4
g Myen (1)
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The unit storage cost for the EV user is,

C
bat
Cuser= §La +
cyc

Cval (2)

Where €, is the valley-time electricity price. The total number of participating EV's is estimated by:

N = PtotalT}z (3)
ev—

allow
Where, P, . ,is total annual V2G peak power support, 7, average daily discharge duration (hours) Total user-side

cost over 7}, years, considering discount factor 7is,
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Where N, is the number of days per year of V2G participation.EV users' revenue from selling power at peak time

Cpeak:
Ty
Z eak total 11 d (5)
= A+t

2.3. Benefits of Grid
Installing and maintaining V2G infrastructure, including control systems and chargers, is the responsibility of grid
companies. Assume that N, is the number of participating EVs and C; . is the infrastructure cost. € mgmtls the yearly

cost of project management. The grid operator's overall expense is then,

y
Z Congme+ CoapProe Ty, ©)

C C. . Noy,+
1+ nt

infra

Grid operators benefit from lower capacity expansion expenses, which are projected to be:

B Z capr tota/ + Clme Ptotal T]I Nd (7)
(1+Ht

where €, is the cost per kWh of postponed transmission expansion and C, is the cost per kW of averted
generation.

2.4. Benefits for Power Producers
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Producers of power save money, lower operational costs as a result of making the most use of base load plants and
less investment in peaking power units. Let A C;, be the savings from utilizing base load rather than peak power, and

let Cgep, be the unit cost of peak load power capacity. The advantage then is,

T,

y

B - Z CoenLroa T B Cop Lropar TNy (8)
= 1+

The following is the net economic advantage of peak shaving based on V2G:
G= B+ By+ B,— C;,— (g 9)

2.5. Load Shifting

Relocating consumption from periods of peak demand to off-peak hours is known as load shifting, and it is a
demand-side energy management approach. When it comes to load shifting in grid-connected systems, EVs are essential,
particularly when combined with V2G technology. EVs are charged during periods when electricity rates and demand
are low, usually at night. These cars can release stored energy back into the grid later, during peak hours when demand
and power costs are high. In doing so, the load curve is flattened, and peak demand stress is successfully reduced by
redistributing energy use throughout the day.

Load shifting in V2G networks is advantageous to EV owners as well as grid operators. Without having to rely on
expensive peaking power plants or make significant investments in new infrastructure, grid managers are able to better
balance supply and demand. However, battery deterioration, energy efficiency losses, and charging/discharging
restrictions must also be taken into consideration in this economic model. Thus, to optimize load shifting's advantages
while reducing its disadvantages, intelligent scheduling and optimization techniques like DNNs are employed.

When incorporating variable non-conventional resources like wind and PV, load shifting is particularly crucial. The
grid may use more clean energy and less fossil fuel by rearranging loads to coincide with periods of strong renewable
power. Thus, load shifting improves overall grid dependability by serving as a link between sporadic renewable
production and steady demand in the context of smart grids and energy storage systems.

3. DNN based Control logic for Inverter connected to EV battery

A DNN-based control system intended for DSM in a V2G operation is shown in Fig. 2. To create the ideal power
references, Pref and Qrer, the DNN gets inputs such as the time of day and the EV battery's state of charge. To create
current references (Iarer, Ioref), these references are compared to the real power outputs, Pact and Qacr. The errors are then
treated using PI controllers. The inverter output is controlled by comparing the reference and actual currents after a
transformation block transforms the measured three-phase voltages and currents into dq0 coordinates. To improve
response accuracy, the control loop uses feedforward decoupling to reduce coupling between the d and q axes. After
being converted back into Va., the voltage commands (Vg4, V) are delivered to a PWM generator, which generates the
switching pulses for the inverter that is attached to the EV battery. The EV and the grid can exchange energy intelligently
and efficiently thanks to this setup. By charging the battery at off-peak hours and discharging it through high-demand
times, the technology facilitates valley filling and peak shaving, which eventually stabilizes the grid and increases energy
efficiency. This model continuously adjusts to real-time situations using DNN-based prediction and control, ensuring
dependable V2G participation and optimized battery utilization.
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Fig. 2: DNN based Control for Inverter connected to battery

4. Results & Discussions
The proposed Peak shaving and Load shifting for V2G is performed in MATLAB/Simulink. Totally 5 residential
and 3 commercial load profiles are considered for 24 hrs Time period. The Load Profile is represented in Fig. 3 and 4.
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Fig. 3: Residential Load Profile
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Fig. 4: Commercial Load Profile

The maximum grid power obtained without battery and DNN control is 166.5 kW, The power is represented in Fig.
5.
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Fig. 5: Grid Power without Peak shaving

When the battery is connected with DNN control, peak shaving is employed in the grid power for effective EM
using the DNN control employed in the battery, considering the SOC & time of the loads. The power gained with peak
shaving is represented in Fig. 6. Due to peak shaving, the power is distributed uniformly & the maximum peak power is
100 kW. This control helps in reducing the cost of the system and effective operation of the grid. The battery power
during peak shaving is represented in Fig. 7. Here the battery is operated in V2G mode from 7 to 20 hours.
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Fig. 6: Grid Power with Peak shaving
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Fig. 7: Battery Power with Peak shaving

The load power obtained for the 5 loads connected during peak shaving is given as follows: based on the load
profiles, the power is shared from the grid and battery based on the SOC of the battery.
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Fig. 8: Load Power-1 during Peak shaving
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Fig. 9: Load Power-2 during Peak shaving
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Fig. 10: Load Power-3 during Peak shaving
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Fig. 11: Load Power-4 during Peak shaving
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Fig. 12: Load Power-5 during Peak shaving
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Fig. 13: Total Power-2 during Peak shaving
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During peak time, especially from 7 hr to 20 hrs , the peak load is operated from 1 to 6 hr. This shifting will provide

smooth operation of the system by making the peak grid power even less. The comparison of the impact of peak shaving
and load shifting is represented in Fig. 13.

EEE 138-10



Grid power

200 T T T
Without Peak shaving
With Peak Shaving
150 T 1 1 Load Shifting

Power (kW)
S
o

50

0 | ] i} J
0 5 10 15 20

Time (Hours)

Fig. 13: Impact of Peak shaving and Load Shifting

Fig. 13 illustrates the impact of DNN-based control strategies on grid power consumption during V2G operations.
The plot compares three scenarios over a 24-hour time frame: "Without Peak Shaving," "With Peak Shaving," and "Load
Shifting." The red curve represents the grid power profile without any control intervention, which clearly shows high
power spikes, particularly between 10 and 17 hours, where power demand reaches nearly 170 kW. This uncontrolled
demand leads to peak load conditions that stress the grid. In contrast, peak shaving and load shifting illustrate the
effectiveness of the DNN-based control approach. Peak shaving smooths out the extreme power peaks by intelligently
redistributing the load, particularly noticeable during the high-demand window (10—17 hrs), bringing the demand closer
to 90-100 kW. Similarly, the load-shifting strategy redistributes power demand from peak to off-peak periods, achieving
a more consistent load profile over time.

5. Conclusion

The additions of EVs and non-conventional resources into the power grid demand intelligent strategies to manage
energy distribution effectively and maintain grid stability. This study presents a DSM approach using DNN-based
control for a V2G-enabled energy storage system. The proposed system forecasts short-term power demand and user
behaviour to optimize EV charging and discharging cycles. By incorporating variables such as battery SOC, grid load
profiles, electricity pricing, and EV availability, the DNN ensures smart and timely decisions that reduce stress on the
grid. Simulation results, conducted in MATLAB/Simulink using residential and commercial load profiles over a 24-
hour period, reveal the significant benefits of implementing peak shaving and load shifting strategies through V2G
operations. Without DNN control, grid power peaked at 166.5 kW, creating high stress and operational costs. With
DNN-based peak shaving, the maximum grid power was reduced to 100 kW, highlighting an efficient flattening of the
load curve. Additionally, load shifting further redistributed energy usage, promoting grid reliability and minimizing
demand fluctuations during peak hours. The comparative analysis confirms that both peak shaving and load shifting,
enabled by the DNN model, lead to smoother power profiles and more efficient energy utilization. This not only reduces
energy costs but also supports large-scale renewable energy integration. Therefore, the DNN-based DSM approach
proves to be a robust and scalable solution for future smart grid applications, enhancing both economic and operational
efficiency.

References

[1] Aziz, N., Shah, M. A., & Mehmood, M. U. (2019). Vehicle to grid (V2G) for peak shaving: New trend, benefits,
and issues. International Journal of Computing and Communication Networks, 1(2), 27-37.

EEE 138-11



[2]

[3]

[7]

(8]

[9]

Lopez, M. A., De La Torre, S., Martin, S., & Aguado, J. A. (2015). Demand-side management in smart grid
operation considering electric vehicles load shifting and vehicle-to-grid support. International Journal of Electrical
Power & Energy Systems, 64, 689-698.

Arango Castellanos, J. D., Dhanasekaran Velayutha Rajan, H., Rohde, A. K., Denhof, D., & Freitag, M. (2019).
Design and simulation of a control algorithm for peak-load shaving using vehicle to grid technology. SN Applied
Sciences, 1, 1-12.

Zheng, Y., Shao, Z., & Jian, L. (2021). The peak load shaving assessment of developing a user-oriented vehicle-
to-grid scheme with multiple operation modes: The case study of Shenzhen, China. Sustainable Cities and
Society, 67, 102744.

Erden, F., Kisacikoglu, M. C., & Erdogan, N. (2018). Adaptive V2G peak shaving and smart charging control for
grid integration of PEVs. Electric Power Components and Systems, 46(13), 1494-1508.

Attou, N., Zidi, S. A., Hadjeri, S., & Khatir, M. (2021, May). Improved peak shaving and valley filling using V2G
technology in grid connected Microgrid. In 2021 Third International Conference on Transportation and Smart
Technologies (TST) (pp. 53-58). IEEE.

Erdogan, N., Erden, F., & Kisacikoglu, M. (2018). A fast and efficient coordinated vehicle-to-grid discharging
control scheme for peak shaving in power distribution system. Journal of Modern Power Systems and Clean
Energy, 6(3), 555-566.

Kasturi, K., Nayak, C. K., & Nayak, M. R. (2021). Photovoltaic and electric vehicle-to-grid strategies for peak load
shifting in low voltage distribution system under time of use grid pricing. Iranian Journal of Science and
Technology, Transactions of Electrical Engineering, 45, 789-801.

Hashim, M. S., Yong, J. Y., Ramachandaramurthy, V. K., Tan, K. M., Mansor, M., & Tariq, M. (2021). Priority-
based vehicle-to-grid scheduling for minimization of power grid load variance. Journal of Energy Storage, 39,
102607.

[10] Udrene, L., & Bazbauers, G. (2015). Role of vehicle-to-grid systems for electric load shifting and integration of

intermittent sources in Latvian power system. Energy Procedia, 72, 156-162.

[11] Movahedi, H., Pannala, S., Siegel, J., Harris, S. J., Howey, D., & Stefanopoulou, A. (2024). Extra throughput versus

days lost in load-shifting v2g services: Influence of dominant degradation mechanism. arXiv preprint
arXiv:2408.02139.

[12] Khan, S. U., Mehmood, K. K., Haider, Z. M., Rafique, M. K., Khan, M. O., & Kim, C. H. (2021). Coordination of

multiple electric vehicle aggregators for peak shaving and valley filling in distribution feeders. Energies, 14(2),
352.

EEE 138-12



	Enhanced Grid Stability and Demand-Side Optimization through Deep Neural Network-Controlled Vehicle-to-Grid (V2G) Peak Shaving and Load Shifting

