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Abstract - This paper presents the development and application of machine learning (ML)-based image processing pipelines to
investigate DNA repair and calcium responses following cellular injury. We induced controlled DNA double-strand breaks through laser
ablation and also simulated traumatic injuries in live-cell models using a similar method of laser-induced shockwave (LIS) systems. By
integrating Cellpose-based segmentation and Python-driven automation, we substantially improved the image data analysis of three major
applications: protein recruitment after DNA damage, calcium flux tracking in cortical neurons after shockwave injury, and calcium
dynamics comparison in Alzheimer’s disease (AD) models. We considerably shortened manual processing time while maintaining
improved levels of precision, as well as being easily scalable to other applications. These results demonstrate the potential of ML-
enhanced image analysis in advancing research of DNA damage repair, traumatic brain injury (TBI) simulation, and neurodegeneration
studies.
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1. Introduction

The elucidation of the DNA double helix structure by Watson and Crick significantly advanced our understanding of
genetic material, subsequently highlighting DNA's susceptibility to damage. Early seminal work by Meselson and Stahl
established foundational principles in DNA replication and repair mechanisms [1]. In the 1970s, Berns and colleagues used
precise laser technology to introduce laser ablation as a method to generate cellular-level damage in a highly controlled
manner [2], which greatly enhanced the study of biological damage processes [3]. Further advancements in laser
technologies and live imaging techniques have enabled real-time monitoring of DNA repair processes within living cells,
allowing for a better understanding of molecular interactions following DNA double-strand breaks (DSBs) [4-11].

Despite these technological advancements, analyzing the large amounts of imaging data generated from live-cell
experiments remains labor-intensive and highly error-prone. Consequently, there is a significant need for efficient,
automated data analysis methods. The integration of machine learning (ML) algorithms offers a powerful solution to this
challenge. In this paper, we proposed an ML-driven image analysis approach that substantially accelerates data processing
while delivering accuracy and being highly reproducible.

Additionally, laser-induced shockwaves (LIS) have been serving as a powerful tool for studying the cellular damage and repair
processes induced by traumatic brain injury (TBI), driven by its prevalence in sports and military contexts. Research in blast-
induced TBI began in the 1950s [12], evolving into extensive molecular studies over subsequent decades [13-14]. Inspired
by applications of LIS in medical treatments such as lithotripsy of gallstones [15], recent research has explored the
biological effects of therapeutic shockwaves and ultrasound in neural tissues, explicitly emphasizing the role of Ca2+
signaling mediated by cavitation microbubbles [16]. Our laboratory has developed a specialized LIS system capable of
precisely simulating cellular conditions analogous to blast-induced TBI, allowing for the detailed examination of neuronal
and astrocytic calcium responses [17].
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Traditional manual quantification methods for calcium fluctuations are inefficient and susceptible to variability. We
integrated advanced LIS techniques with robust Python-based machine learning methods for rapid, precise, and automated
analysis of neuronal calcium dynamics, facilitating comparisons between healthy and Alzheimer's disease models. Through
this method, we aim to enhance the efficiency and reliability of biological image analysis, thereby advancing our
understanding of DNA repair mechanisms and calcium signaling following cellular injury.

2. Materials and System Setups

2.1 Laser Ablation System Setup and Cell Lines for DNA Repair Study

A tunable femtosecond mode-locked Ti:Sapphire infrared laser (Mai Tai, Spectra-Physics, Newport Corp., Mountain
View, CA) was used to generate the laser-induced microirradiation for precise subcellular targeting. Laser power was
attenuated via a motorized rotating optical polarizer (Newport, Irvine, CA), and pulse delivery was controlled by a
mechanical shutter (Vincent Associates, Rochester, NY) with a 10 ms duty cycle. The laser beam was expanded to fill the
back aperture of a 100x NA 1.3 Zeiss objective mounted on a Zeiss Axiovert 200M microscope and focused on the sample.
Two-photon excitation was employed at either 730 nm (effective 365 nm) or 800 nm (effective 400 nm) with laser powers
of 50 mW and 60 mW, respectively, measured before entering the phase contrast objective. A custom-built Labview APP
was programmed to facilitate high-resolution, real-time, live-cell imaging.

The preparation of U20S (human osteosarcoma) cell lines was described previously in [18]. U20S cells were
obtained from the American Type Culture Collection (ATCC) cell repository. RPE-1 WT cells were received from Dr.
Stephen P. Jackson’s lab. UWB1 and UWBI reconstituted with BRCAT1 cells were received from Dr. Lee Zou’s lab. Cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS;
GeminiBio.), 2mM L-glutamine (Sigma-Aldrich), and 1% penicillin-streptomycin containing glutamine (Gibco) at 37 °C in
a humid atmosphere containing 5% CO,. The U20S (EGFP-HR/STGC) reporter cell line was generated by the transfection
of the EGFP-HR/STGC reporter into U20S cells with polyethylenimine (PEI) using the standard protocol, followed by
hygromycin B (100 pg/ml) selection. Double-strand breaks (DSBs) were introduced in live-cell nuclei through precision
laser-induced microirradiation.

2.2 Laser-Induced Shockwave System Setup

A Coherent Flare 532 nm laser system (100 Hz repetition rate, 2 ns pulse width, 450 pJ pulse energy; Spectra-Physics,
Mountain View, CA) was used to generate localized shockwaves. Laser power was attenuated via a motorized rotating
optical polarizer (Newport, Irvine, CA), and pulse delivery was controlled by a mechanical shutter (Vincent Associates,
Rochester, NY) with a 10—-15 ms duty cycle. The laser beam was expanded to fill the back aperture of a 40x NA 1.3 Zeiss
objective mounted on a Zeiss 200M microscope and focused 10 pm above the substrate. The incident power measured
before the objective was approximately 200-220 uW. A Zeiss filter set 48 (436/20 nm excitation, 455 nm long-pass
dichroic mirror) was installed, with additional emission filters (535/30 nm for FRET, 480/40 nm for ECFP) mounted on a
LUDL motorized filter wheel, positioned before an ORCA-Flash4.0 V2 Hamamatsu CMOS camera for fluorescence
imaging.

Mouse primary cortical neurons were cultured as described in (Gu et al., DOI: 10.1016/j.nbd.2024.106502). Cells were
preloaded with Fluo-4 AM[17] to study calcium flux. LIS creates a cavitation bubble that expands and rapidly collapses,
causing subsequent death to cells in the bubble's vicinity. A 1032 nm laser was focused 10 pm above the substrate, which
contained the neurons.

3. Results and Discussions

3.1 Machine Learning-Driven Image Analysis for DNA Repair Dynamics Post-Laser Ablation
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One of the critical bottlenecks traditionally faced in live-cell DNA repair imaging is the labor-intensive nature of
manually analyzing hundreds to thousands of time-lapse fluorescence images, capturing subtle recruitment events of repair
proteins post-laser ablation. To overcome this challenge and significantly expedite the data analysis phase, we designed and
adapted a robust machine learning pipeline, building on the strengths of Cellpose [19], a state-of-the-art deep learning
segmentation framework in computational biology.

Our work represents a major step forward by integrating automated cell detection, repair line identification, and intensity
quantification into a single, streamlined system. After extensively evaluating many of the available methods through online
repositories, published studies, and GitHub resources, we found Cellpose to be the most versatile. We customized Cellpose’s
pre-trained convolutional neural networks (CNNs) to specifically address the challenges associated with dynamic protein
recruitment analysis following DNA damage.

The pipeline we developed is as follows:

1. Batch Image Loading: Sequential fluorescence images capturing the recruitment of repair proteins, such as Red52,

were loaded (e.g., Figure 1(a)).
2. Automated Cell Segmentation: Leveraging deep learning algorithms within Cellpose, each image underwent
automated segmentation to detect cellular boundaries and generate accurate masks (e.g., Figure 1(b)).

3. Cropped Region Extraction: Using segmentation masks, individual cells were cropped and saved for high-

precision analysis.

4. Recruitment Line Detection Initiation: The brightest pixel within each cropped cell was identified using

np.argmax() in Python, pinpointing the initial recruitment signal at laser cut sites.

5. Thresholding and Binary Mask Creation: The cropped images were normalized, thresholded, and converted to

binary masks using OpenCV libraries, enhancing the signal-to-noise ratio.

6. Contour Detection and Line Segmentation: Contours were detected, and the laser-induced cut line was precisely

delineated by finding and connecting the two farthest points on the contour, as shown in Figure 2(a).

7. Quantitative Brightness Measurement: A quantitative analysis was performed by calculating the mean

fluorescence intensity along the laser cut line, providing a direct measurement of recruitment kinetics.

8. Data Export and Visualization: Results, including brightness values over time, were systematically recorded into

CSV files and plotted using Matplotlib to generate graphical representations of recruitment dynamics (e.g., Figure
2(b) of the second cell in Figure 2(a)).

This machine learning-driven approach not only speeds up the data analysis by reducing processing times significantly
compared to manual methods but also enhances accuracy and eliminates subjective bias that is inherent to traditional image
scoring. The successful adaptation of Cellpose and the custom pipeline serve as a highly scalable model for the broader
biological community studying DNA repair mechanisms, setting a new benchmark for automated, efficient biological
imaging analysis.

Figure 1(a): Post-2 min Image of U20S Red52 Protein Recruitment, (b): Automated Cell Detection Using Cellpose
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Figure 2(a): Recruitment Le Detection in a Single Cell, (b): Quantification of GFP Intensity Over Time

3.2 Automated Image Processing of Calcium Responses After Laser-Induced Shockwave Injury

Building upon the expertise developed in automating DNA repair imaging analysis, we extended our machine

learning-driven methods to a second biological application: the quantitative analysis of cellular calcium dynamics following
LIS. This application represents a natural progression, leveraging the core strengths of automated image segmentation and
intensity quantification techniques to solve a new but equally complex biological problem.

LIS systems simulate localized mechanical injuries at the cellular level, enabling the study of intracellular calcium

fluxes: a critical early indicator of neuronal and astrocytic responses to TBI conditions. However, manually analyzing the
large volumes of time-lapse imaging data generated by these experiments is impractical and susceptible to significant
observer bias. Therefore, an efficient, automated workflow was designed to systematically extract, quantify, and visualize
calcium response patterns across hundreds of cells over multiple frames.

The workflow we established for LIS data analysis involves several key innovations:

1.

Brightest Frame Indexing: To accurately detect the initiation of the calcium signaling response, the entire image
series was first scanned to identify the frame exhibiting the highest overall fluorescence intensity, marking the
onset of the shockwave effect, as shown in Figure 3(a).

Automated ROI (Region of Interest) Segmentation: Cells were automatically segmented from the frame
containing the peak fluorescence signal. Using adapted algorithms initially developed for DNA repair studies, each
cell was delineated as an individual Region of Interest (ROI), enabling targeted intensity tracking as shown in
Figure 3(b).

Temporal Tracking of Cellular Response: For each segmented ROI, fluorescence intensity was measured and
recorded across all frames, capturing the temporal evolution of the calcium response at the single-cell level.

Batch Processing of Multiple ROIs: The system efficiently looped through all detected ROIs and frames,
automatically compiling time-resolved fluorescence traces for large populations of cells, with minimal manual
intervention.

Quantitative Data Output and Visualization: The intensity trajectories of each cell were exported into structured
datasets (CSV format), enabling downstream statistical analysis. Visualization tools such as Matplotlib were
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employed to generate comprehensive response curves, facilitating rapid interpretation of cellular behavior post-
shockwave as shown in Figure 3(c).

(a) Fluorescence Image (b) Automated Cell Detection (¢) Calcium Responses
Figure 3: Quantitative Tracking of Calcium Responses Across All Segmented Cells Over Time

This pipeline markedly accelerated the analysis process, reducing what previously required several hours of
manual tracing per dataset to 2-4 minutes of fully automated computation. Moreover, the automated system maintained a
high level of accuracy in identifying subtle and heterogeneous calcium responses among different cell types, offering an
efficient and highly scalable solution for large experimental datasets.

By transferring the machine learning experience gained from DNA repair imaging to the field of traumatic injury
modeling, we demonstrated the robust adaptability and transformative potential of Al-enhanced image analysis across
distinct yet biologically significant applications.

3.3 Automated Calcium Imaging Analysis in Mouse Primary Cortical Neurons

Building upon the successful machine learning frameworks developed for DNA repair and LIS calcium studies, we
extended our methods to investigate calcium flux in mouse primary cortical neurons. Cortical neurons are particularly
vulnerable in neurodegenerative diseases such as Alzheimer’s disease. Studying cellular calcium dynamics post-LIS
provides key information on early functional deficits associated with disease progression.

Traditionally, analyzing neuronal calcium transients relied on MATLAB-based approaches, which were prone to
instability, frequent error messages, and extensive manual masking efforts. To overcome these limitations, we designed a
robust, fully automated Python pipeline that significantly enhanced analysis speed, reliability, and accessibility.

The workflow we developed consists of the following steps:

1. Input Image Selection: Users provided both Fluo-4 fluorescence images (capturing calcium signals) and phase
contrast images, along with channels for Dead Red (dead cells) and empty background views.

2. Dead Cell Detection: A watershed segmentation algorithm was applied to Dead Red channels to accurately
identify non-viable cells, ensuring they were excluded from subsequent calcium response analyses.

3. Live Cell Segmentation: Cellpose, a generalist Al-based cell segmentation algorithm, was utilized to
automatically delineate individual live neurons (Figure 4), eliminating the need for manual outlining.

4. Shockwave Frame Detection and Validation: The system automatically detected the frame at which the LIS-
induced calcium response peaked and validated intensity data quality for each cell.

5. Quantitative Calcium Analysis: For each valid live cell, AF/Fo values were computed to normalize calcium
intensity changes over time. Calcium flux peaks were detected, and two-phase exponential decay models were
fitted to estimate transient half-lives, providing detailed kinetic profiles.
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6. Data Export and Visualization: The pipeline generated time-course plots (e.g., Figure 5) highlighting shockwave
onset, calcium peak detection, and return to baseline. The final results were exported in CSV format for easy
statistical analysis.

Figure 4: Cellpose & Dead red segmentation
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Figure 5: Calcium Response of Dead (left) and live (right) cells

4. Conclusion

In this study, we successfully developed and deployed machine learning-driven image analysis frameworks across three
biologically critical applications: DNA repair after laser-induced damage, calcium signaling dynamics following LIS injury,
and neuronal calcium flux. By integrating advanced segmentation techniques such as Cellpose with custom Python-based
automation, we significantly accelerated data processing, increased analytical accuracy, and eliminated subjective bias
associated with traditional manual methods.

For DNA repair studies, our pipeline achieved rapid and precise quantification of protein recruitment kinetics post-
damage, setting a new benchmark for efficient and accurate analysis in live-cell imaging. In the context of TBI modeling,
our automated calcium analysis pipeline enabled large-scale temporal mapping of astrocyte and neuronal responses following
shockwave stimulation, significantly reducing human labor while maintaining high precision. Finally, by extending these
tools to mouse primary cortical neuron models, we demonstrated the versatility and scalability of our machine learning
approach in deciphering complex and heterogeneous biological responses.
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Our collective achievements showcase the transformative potential of artificial intelligence in biomedical imaging and
pave the way for future studies requiring rapid, reproducible, and scalable analysis of dynamic biological phenomena.
Continued innovation at the intersection of machine learning and bioengineering will undoubtedly accelerate discoveries in
cellular injury, neurodegeneration, and DNA damage response mechanisms.
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