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Abstract - This paper presents miRror, a modular intelligent mirror system designed to support autonomous tumor screening
through thermal imaging in both clinical and remote settings. The system integrates embedded long-wave infrared (LWIR)
sensing, real-time thermal preprocessing, lightweight convolutional neural inference, and onboard result visualization within
a compact edge device. Its design addresses key challenges in accessibility, repeatability, and privacy, offering an alternative
to conventional imaging methods in low-resource or decentralized environments.

The clinical workflow is structured around standardized thermal acquisition protocols that ensure consistent patient
positioning, controlled environmental conditions, and reproducible image capture. The processing chain encompasses
thermal calibration, region-of-interest segmentation, and real-time classification executed locally on embedded hardware.
This configuration enables low-latency inference without reliance on external servers, preserving data confidentiality and
supporting future scalability. To validate the system’s diagnostic module, six lightweight convolutional models—including
MobileNetV2, MobileNetV3 (Small and Large), EfficientNetB0, EfficientNetV2B0, and NASNetMobile—were trained and
evaluated using the publicly available DMR-IR dataset. Models were assessed using AUC-ROC, precision-recall metrics,
and statistical significance testing via the Friedman test and Nemenyi post-hoc analysis. MobileNetV3-Large demonstrated
superior performance (AUC = 0.99) with consistent interpretability through Smooth Grad-CAM++ visualizations. While
hardware prototyping is ongoing, these results provide a proof-of-concept for mIRror’s embedded diagnostic capabilities.
The modular architecture is designed to support future extensions, including federated learning for secure collaborative
training and digital twin integration for individualized monitoring. Together, these components position mIRror as a scalable
platform for Al-assisted thermal diagnostics.

Keywords: Infrared Thermography, Edge Computing, Lightweight Convolutional Networks, Embedded Diagnostic Systems,
Breast Cancer Screening, Federated Learning, Digital Twin.

1. Introduction

Cancer screening is a critical pillar of global health strategies, significantly improving survival outcomes when diseases
are caught in the early stages| 1]. Conventional diagnostic tools such as mammography, colonoscopy, and low-dose CT have
become essential to clinical workflows and early intervention[2]. Despite the widespread adoption of screening technologies,
persistent disparities remain regarding their accessibility, diagnostic performance, and cultural acceptability across patient
populations[3]. In recent years, there has been a growing emphasis on patient-centered screening paradigms, which advocate
for individualized risk assessments, tailored communication, and shared clinical decision-making. As emphasized by [4],
advancing this approach necessitates not only technical tools to support preference-sensitive care but also a broader cultural
reorientation—one that recognizes that cancer screening decisions may not always yield a universally optimal solution.
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Nonetheless, conventional diagnostic tools have well-recognized limitations. Mammography, although considered the
standard approach for breast cancer screening, does not perform equally across all patient groups. While its sensitivity is high
in fatty breast tissue, it drops substantially in extremely dense breasts—ranging between 30% and 48% in reported studies
[5], [6], [7]. Additionally, as many as one in four breast cancers detected through screening may never progress, leading to
overdiagnosis and overtreatment[8]. These diagnostic shortcomings can limit the effectiveness of screening in certain
populations and reinforce broader disparities in health outcomes. Infrastructural constraints, exposure to ionizing radiation,
and discomfort during procedures also pose barriers to widespread, repeatable, or decentralized use—especially in low-
resource and remote settings. Some studies have suggested that digital infrared thermal imaging (DITI) may provide
additional diagnostic information in dense breast tissue or among younger women, warranting further investigation[9].

Infrared (IR) thermography, a non-invasive modality capable of detecting surface-level temperature anomalies linked to
physiological changes, is one such candidate[ 10]. IR systems offer real-time insights without radiation exposure by mapping
thermal patterns caused by inflammation, vascular remodeling, or tumor metabolism. When coupled with artificial
intelligence (Al), their diagnostic capacity is significantly enhanced. Deep learning models have achieved accuracies between
85% and 94% when classifying benign and malignant lesions—particularly effective in dense tissue where mammography
underperforms[11], [12].

To build on these advances, we present a modular intelligent mirror system that integrates IR imaging, Al inference,
federated learning, and digital twin modeling. This platform is designed for both in-clinic and remote deployment, offering
real-time diagnostics while preserving patient privacy and adaptability. Although breast cancer is used as a representative
use case, the architecture supports broader screening applications across multiple cancer types and thermally observable
conditions.

2. mIRror Clinical workflow overview

The intelligent mirror system has been developed with a modular design that reflects the sequential steps of its clinical
use—from capturing thermal images to generating interpretative results. Its architecture is intended to function reliably across
different settings, including conventional clinics and remote care environments. Embedded processing capabilities allow for
real-time analysis directly within the device without relying on external computation. As illustrated in Figure 1, the system
is organized into distinct yet integrated components that align with key stages of the screening workflow: image acquisition,
thermal preprocessing, Al-assisted inference, and result communication. Each component is designed to operate in
coordination with the others, supporting consistency and adaptability across use cases. The following sections describe each
phase of the workflow and its role in supporting clinical decision-making.
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Fig. 1: mIRror Clinical Workflow.
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2.1. Positioning the Patient for Thermal Capture

Accurate thermal imaging begins with precise and standardized patient positioning, a critical factor for minimizing
artifacts and enhancing diagnostic consistency. In thermal imaging systems, particularly those integrated into embedded
diagnostic devices, the quality of captured thermograms is susceptible to both physiological variability and environmental
perturbations. To ensure reproducibility, the clinical setting is carefully controlled: ambient temperature is maintained
between 22°C and 24°C with relative humidity below 50%, stabilizing cutaneous thermoregulation and reducing the
influence of vasomotor fluctuations[13]. Before imaging, patients are advised to remove clothing and any accessories from
the region of interest to avoid interference with heat distribution. A brief rest period of 10 to 15 minutes in a controlled
environment is recommended to allow the skin surface temperature to stabilize. This acclimatization ensures that superficial
blood flow reaches a steady state, reducing physiological variability and enhancing the accuracy of thermal
measurements[14], [15].

In the breast screening use case, the patient is approximately 1.0 m from the infrared mirror, adopting a posture with

arms elevated at a 90° angle from the torso[16]. This configuration minimizes occlusion from skin folds and exposes key
anatomical landmarks, including the axillary regions, which are relevant for lymphatic assessment. The system integrates
visual alignment tools to ensure consistency in pose across sessions. In clinical settings, alignment is confirmed manually by
trained staff. In remote deployments, we aim to incorporate augmented reality (AR) overlays onto the mirror interface to
assist patients in achieving proper positioning at home, thereby approximating the guidance typically provided in clinical
settings.
In addition to spatial alignment, pre-imaging preparation protocols are essential for preserving the integrity of thermographic
data. Patients are instructed to avoid physical exertion, caffeine, nicotine, and hot beverages for at least two hours before
imaging. Skin should be free of lotions, powders, deodorants, or cosmetics, as these may interfere with infrared signal quality.
Residuals may be removed using alcohol-free wipes, while thermal gels or enhancers are contraindicated under current
clinical protocols[17].

2.2. Infrared Image Acquisition

The infrared (IR) imaging module in the intelligent mirror system captures thermal radiation passively emitted by the human
body. Human skin, with an emissivity close to 0.98, behaves similarly to a blackbody in the thermal infrared range, allowing
for precise measurement of surface temperature distributions[18]. The system operates in the long-wave infrared (LWIR)
band, typically between 8 and 14 pm, where thermal emission is most significant under physiological conditions. Thermal
emission at a given wavelength and temperature is governed by Planck’s radiation law as shown in Eq. (1), where L(/l, T) is
spectral radiance, 4 is Planck’s constant, cis the speed of light, kis Boltzmann’s constant, A is the wavelength, and 7'is the
absolute temperature[19].

The system integrates an uncooled microbolometer sensor, which operates by detecting thermal radiation-induced resistance
changes—a principle well-established in early infrared imaging research. Recent works have further optimized these sensors
through improved NETD (<50 mK) and enhanced calibration algorithms, reinforcing their suitability for embedded
diagnostic applications [20], [21].

2.3. Thermal preprocessing

Pre-processing transforms raw thermal images into standardized inputs for Al inference by correcting variability due to
environmental noise, patient posture, and sensor drift. First, thermal data is linearly normalized into an 8-bit grayscale image
as shown in Eq. (2).
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with Tmin and Timax typically set between 30—40°C. This enhances contrast and facilitates consistent model input.

Orientation correction is then applied using landmark-based alignment to reduce postural variance. Region-of-interest
(ROI) segmentation follows, isolating the anatomical target and masking background elements to reduce noise [22].Minimal
on-device augmentation (e.g., slight shifts or brightness scaling) improves robustness during model training while preserving
real-time execution.

2.4. Al edge inference and use case

The intelligent mirror system under development is intended to support two primary clinical pathways: (A) real-time
screening in clinical settings and (B) remote patient monitoring. In both cases, thermal image classification is executed
directly on the device via embedded edge computing. Local inference reduces latency and eliminates reliance on external
servers, improving data security and responsiveness—critical features in decentralized healthcare environments [23].

In the clinical workflow (Use Case A), diagnostic outputs are generated on-site and reviewed immediately by the
attending physician. For remote deployment (Use Case B), encrypted inference outputs or feature embeddings are transmitted
to clinical endpoints for asynchronous review. To support efficient edge deployment, a lightweight convolutional neural
network will be integrated into the system.

Looking ahead, two components are planned to enhance the system’s adaptability and personalization. A federated
learning framework will be implemented to enable secure, decentralized model updates across multiple devices without
transmitting raw data [24]. Additionally, a digital twin module will be incorporated to simulate individual patient thermal
and physiological dynamics, facilitating longitudinal tracking and personalized diagnostics [25]. Collectively, these
enhancements position the intelligent mirror as a modular and secure diagnostic platform, capable of supporting both in-
clinic workflows and remote patient monitoring across diverse healthcare environments.

3. Embedded System Design and Processing Chain
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Fig. 2: System architecture diagram of the embedded hardware and processing chain within the infrared mirror.
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The intelligent mirror platform integrates thermal sensing, signal processing, connectivity, and user interface modules
into a compact embedded system designed for point-of-care screening. As depicted in Figure 2, the architecture is
composed of four principal subsystems: (1) thermal acquisition, (2) embedded computation, (3) wireless communication,
and (4) display and user interaction. The sensing module is based on an uncooled long-wave infrared (LWIR)
microbolometer operating within the 8—14 um spectral range, offering high thermal sensitivity and passive operation
suitable for clinical environments.

Thermal image streams are routed to a central processing unit that includes specialized components for low-latency
data handling and frame analysis. The system incorporates both volatile (DDR4) and non-volatile (eMMC and Flash)
memory units for efficient data buffering and retention. Barcode scanning and biometric recognition modules are integrated
for patient identification and workflow streamlining.

Wireless transmission capabilities via Wi-Fi and Bluetooth enable synchronized data exchange with external health
records systems or telemedicine platforms. Diagnostic results and real-time thermal maps are visualized through an
embedded touchscreen display governed by a dedicated display controller. Power delivery is managed by a multi-tiered
unit responsible for regulating processor activity, display output, and battery health. The modular design of the system
facilitates future augmentation with distributed learning frameworks and patient-specific simulation tools, supporting
adaptive monitoring across temporal scales.

4. Al Model Evaluation for Embedded Thermal Inference

This section outlines the experimental protocol and findings from the performance assessment of compact convolutional
neural architectures applied to thermal image classification using the DMR-IR dataset. The experiments emulate the
operational context envisioned for the mIRror system, offering a preliminary validation of the embedded inference
framework currently in development.

4.1. Dataset

All experiments were conducted on the DMR-IR dataset [26], an open-access thermal breast imaging repository
developed to support the assessment of artificial intelligence techniques in diagnostic contexts. The dataset includes infrared
thermograms, digitized mammograms, and associated clinical metadata collected from 141 patients at the Hospital
Universitario Antonio Pedro (HUAP), part of the Fluminense Federal University in Brazil. In total, it contains 3,534 infrared
images.

Each thermogram was acquired under controlled clinical conditions and annotated as either malignant, benign, or
normal, providing a structured ground truth for supervised learning. The dataset was selected based on its class diversity,
relevance to real-world screening scenarios, and established use in prior studies involving thermal image analysis.

4.2. Preprocessing and Augmentation

Preprocessing followed the thermal normalization and alignment protocol described previously in Section 3. During
training, additional data augmentation was applied to improve model generalization and reduce overfitting. Augmentations
included random horizontal flipping, contrast variation, and slight rotations. All input images were resized to 224x224 pixels
and processed in batches using TensorFlow's real-time augmentation pipeline.

4.3. Model Selection and Training Configuration

Given the resource constraints of embedded hardware, we selected six lightweight CNN architectures for comparison:
MobileNetV2 [27], MobileNetV3-Small [28], MobileNetV3-Large [28], EfficientNetB0 [29], EfficientNetV2B0 [30], and
NASNetMobile [31]. All models were initialized with pretrained ImageNet weights and fine-tuned on the DMR-IR dataset
using the Adam optimizer (learning rate = 1e-4), batch size of 16, and trained for 50 epochs with categorical cross-entropy
loss. The experimental pipeline was designed to emulate edge deployment environments and ensure a consistent training
setup across all models.
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4.4. Results and Interpretability

The comparative assessment of six lightweight convolutional architectures underscored marked disparities in
computational efficiency and classification behavior. MobileNetV3Small achieved the lowest inference latency (1.18 s),
closely followed by MobileNetV2 (1.30 s) and MobileNetV3Large (1.41 s). By contrast, NASNetMobile, despite its compact
design, exhibited the longest processing time (4.19 s), suggesting suboptimal computational scalability.

A Friedman test confirmed statistically significant performance variations among the models (y* = 195.626, p <
0.0001), and the subsequent Nemenyi post-hoc test identified EfficientNetV2BO0 as significantly superior to its counterparts
(p <0.05), while MobileNetV3Small and NASNetMobile consistently ranked among the lowest-performing configurations.

These outcomes were consistent with the grouped evaluation metrics reported in Figure 3a, where EfficientNetV2B0
delivered consistently high scores across accuracy, precision, recall, F1-score, and ROC AUC, indicating balanced predictive
behavior. Conversely, MobileNetV3Small exhibited a degenerate classification pattern—nearly always predicting the
malignant class—which resulted in a recall-biased profile and reduced discriminative value. NASNetMobile similarly
suffered from one-sided predictions, yielding diminished overall performance and low reliability despite a prolonged training
schedule. Notably, both models displayed stagnation in validation accuracy during training, further evidencing convergence
deficiencies under identical optimization settings. In contrast, EfficientNetV2BO0 not only sustained optimal training stability
but also demonstrated strong generalization, positioning it as the most suitable candidate for deployment in clinical screening
environments.

To elucidate the decision-making behavior of the top-performing models, Smooth Grad-CAM++ was applied to
representative benign and malignant samples (Figure 3b—d). EfficientNetV2B0 (Figure 3b) generated moderately
informative attribution maps, with salient regions partially covering thermally irregular areas, though exhibiting some
spatial dispersion. MobileNetV3Large (Figure 3¢) produced the most diagnostically aligned activations, consistently
localizing high-intensity regions corresponding to plausible tumor sites, thus demonstrating superior spatial sensitivity and
clinical relevance. In contrast, MobileNetV2 (Figure 3d) yielded diffuse and less focused saliency maps, reflecting broader
activation patterns with reduced anatomical specificity. These results suggest that MobileNetV3Large offers not only
competitive predictive performance but also enhanced interpretability, reinforcing its suitability for deployment in
thermography-based breast cancer screening workflows.
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Fig. 3. Evaluation metrics (a) and Smooth Grad-CAM++ visual explanations (b—d) for EfficientNetV2B0, MobileNetV3Large,
and MobileNetV2, highlighting predictive performance and thermographic localization.

4. Conclusion

This work introduced mIRror, a thermographic mirror system designed to perform autonomous tumor screening and
monitoring at the edge. Through an experimental assessment of six lightweight convolutional models, MobileNetV3Large
emerged as the most dependable architecture, offering a strong balance between classification performance, inference
efficiency, and interpretability. These findings highlight the importance of selecting architectures suited to thermal image
modalities, especially under hardware constraints. Looking ahead, efforts will concentrate on tailoring a dedicated
lightweight model that can be adapted across different cancer types. Additionally, the system will incorporate federated
learning to support secure multi-institutional collaboration and adopt digital twin principles to enable individualized
monitoring in clinical contexts. The overarching aim remains the integration of m/Rror within national healthcare pathways
to deliver accessible and privacy-preserving diagnostic support.
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