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Abstract - Gait disorders in older adults, especially those over 50, contribute to increased fall risk and reduced quality of
life, making early detection essential. This study presents a deep learning-based approach for classifying gait patterns using
vertical ground reaction force (vGRF) data. Signals from individuals with Parkinson’s disease (PD) and healthy controls 
were pre-processed using band-pass filtering and wavelet denoising, then transformed into time-frequency spectrograms 
via Continuous Wavelet Transform (CWT). A Convolutional Neural Network (CNN) was trained on these spectrograms, 
achieving 93.48% accuracy with precision, recall, and F1-scores above 92%. The trained model was deployed in a 
TensorFlow Lite-powered mobile application, enabling real-time gait classification to support home-based monitoring and 
telemedicine. These findings highlight the potential of combining deep learning with mobile technology for accessible and 
automated gait disorder assessment.
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1. Introduction
       Globally, gait—defined as the manner or pattern of walking—is a fundamental human activity that requires complex 
coordination between the brain, nervous system, and musculoskeletal system. Among older adults, particularly those aged 
50 and above, gait disorders are a significant concern due to their strong association with mobility impairments, increased 
fall risk, and diminished quality of life. These disorders contribute to approximately 646,000 fatal falls annually, ranking 
falls as the second leading cause of accidental deaths worldwide. Additionally, gait-related issues are estimated to account 
for 0.85\% to 1.5\% of global healthcare costs [1],[2]. Given their high prevalence in aging populations, the development of
advanced diagnostic tools and intervention strategies is urgently needed [3].
       Neurodegenerative diseases (NDDs) are a major contributor to abnormal gait. Among them, Parkinson’s disease (PD) 
is particularly debilitating, while Huntington’s disease (HD) affects gait through irregular stride lengths, reduced walking 
speed, and unstable posture [4]. These impairments pose additional risks for older adults already vulnerable to falls. In 
contrast, healthy individuals (CO) typically demonstrate stable and rhythmic gait, providing a critical baseline for 
comparative analysis. Despite progress in gait assessment, conventional methods often lack scalability and precision for 
early identification of PD-specific abnormalities [5],[6].
       Machine learning (ML) and deep learning (DL) have significantly advanced automated gait analysis. Previous studies 
have explored various data types and learning models for classifying gait disorders. For instance, spatiotemporal 
parameters have been shown to be valuable in identifying neurodegenerative diseases [7]. Other approaches include IMU-
derived features combined with supervised learning [8], and CNN-based models applied to speech-related gait features [9]. 
The integration of multimodal data has also improved diagnostic potential; one study reviewed ML techniques for NDD 
monitoring [10], while another proposed a two-stage neural network for PD detection using smartphone sensors [11]. A 
recent survey emphasized the benefits of neural networks and multimodal learning for enhancing PD classification [12].
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Several DL models have achieved high classification accuracy. For example, CNN-based plantar pressure analysis 
successfully predicted freezing of gait in PD patients [13], and an explainable deep learning model for early PD reached 
over 98\% accuracy through data balancing and feature selection [14]. However, most studies have prioritized PD and 
underexplored HD-specific gait patterns in older adults. Additionally, recent efforts have moved toward mobile and cloud-
based platforms to improve accessibility. A mobile-based gait analysis platform, for example, applied mobile deep learning
to assess NDDs [15], while multimodal CNNs and human pose estimation have enabled real-time monitoring in healthcare 
environments [16].
       Despite recent advancements, much of the existing research focuses on younger populations or broad 
neurodegenerative conditions. PD-specific gait abnormalities in older adults remain underexplored, and age-related gait 
changes require tailored models. Moreover, many approaches are limited to offline analysis, reducing their real-world 
applicability. To address these gaps, this study presents a CNN-based framework using vGRF signals transformed into 
time-frequency spectrograms via CWT. Data augmentation enhances model robustness, and the trained model classifies PD
and CO gait patterns. The solution is deployed in an Android app using TensorFlow Lite, enabling real-time classification 
for home-based monitoring and telemedicine.

2. METHODOLOGY
       The methodology illustrated in Figure 1 was followed to develop a deep-learning model for Parkinson’s 
disease gait classification. The process involved three key stages: data collection,

preprocessing, and model development. Gait data from healthy individuals and Parkinson’s patients were processed using 
noise reduction, window selection, and time-frequency transformation via CWT. Data augmentation techniques were 
applied to enhance variability and model robustness. A CNN was then trained for gait pattern classification, and an 
Android-based application is under development to enable real-time PD gait classification.

Fig. 1: Diagram of the proposed method for CO and PD gait classification.

This study used the “Gait in Neurodegenerative Diseases Dataset” by Hausdorff  [7], which includes vertical ground 
reaction force (vGRF) signals recorded from older adults during five-minute walking trials. The signals were collected via 
footwear-embedded force sensors along a 77-meter hallway.

2.1. Dataset
        The dataset included 64 participants with various NDDs. For this study, only those aged 50 and above were selected, 
focusing on 15 with PD and 16 CO. Although data from HD and ALS were available, they were excluded from a focused 
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analysis. Each participant completed a five-minute walk, contributing an average of 277 gait cycles, using only right-foot 
vGRF signals for consistency. As shown in Table 1, PD participants had slightly higher gait speed than CO. These 
variations reflect motor differences significant for training DL models to distinguish between healthy and pathological gait.

Table 1: Information about the people in the Gait dataset.
Mean ± STD

Statistical Parameter Age (Year) Height(m) Weight(kg) Gait Speed(m/s)

CO 62.6 ± 8.63 1.836 ± 0.107 74.6 ± 13.02 1.294 ± 0.207

PARK 66.5 ± 9.06 1.991 ± 0.119 87.37 ± 13.684 1.3325 ± 0.270

2.2 Data Processing and Augmentation
      To prepare the vGRF signals for deep learning analysis, a comprehensive data processing pipeline was applied. 
Initially, the raw signals were denoised using a digital band-pass filter to remove high-frequency and low-frequency noise. 
This operation is mathematically defined in Equation (1):

y t = h t × x t                                                                                                                          1

Where x(t) is the original input signal, h(t) is the impulse response of the filter, and y(t) is the resulting filtered signal. To 
further enhance signal clarity, wavelet-based denoising was performed. The signal was decomposed, thresholded to 
eliminate noise components, and reconstructed using the inverse wavelet transform, as shown in Equation (2):

z t = W − 1 T W y t                                                                                                      2
To improve generalization and minimize overfitting, data augmentation techniques were subsequently applied to the 

spectrogram images. These included horizontal flipping (image inversion along the vertical axis), random rotations within 
±10 degrees to simulate viewpoint variations, and random translations along both the x and y axes to mimic spatial shifts. 
Additional transformations such as brightness and contrast adjustments replicated different lighting conditions, while 
scaling introduced size variability. Gaussian blur was also used to simulate changes in image focus, further diversifying the
input dataset.
2.3 CNN Architecture and Mathematical Formulation
      The CNN model developed in this study classifies the gait patterns of older adults into PD and CO groups. To enable 
effective pattern recognition, vGRF signals were first converted into CWT. These spectrogram images served as input to 
the CNN. The overall architecture, illustrated in Figure 3, begins with the generation of gait signals, continues through 
signal segmentation and CWT-based conversion, and concludes with deep feature extraction and classification using 
convolutional and fully connected layers. The CNN accepts input images of size 224×224×3. It includes three 
convolutional blocks, each designed to extract hierarchical features. The first block applies a 2D convolutional layer with a 
3×3 kernel and 32 filters, followed by batch normalization, ReLU activation, and a 2×2 max pooling layer with a stride of 
2. The second and third blocks replicate this structure but increase the number of filters to 64 and 128, respectively.

Figure 3: Architecture of the CNN Model
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After convolution and pooling, the resulting feature maps are flattened and passed through a fully connected layer, 
followed by a SoftMax layer that produces class probabilities for CO and PD. Mathematically, the convolution operation at
the layer l is represented in Equation (3):

Oₗ =  f Wₗ *  Iₗ − 1 +  bₗ                                                                                                                          3

Here Wl and bl represent the weights and biases of the l-th layer, Il − 1 is the input from the previous layer, and f x =
max 0,x  is the ReLU activation function, which introduces non-linearity into the model.

Next, pooling is applied to reduce spatial dimensions, helping the network retain essential features while reducing 
computation. This is defined in Equation (4):

Pₗ =  pool Oₗ                                                                                                                                          4

After feature extraction, the output is passed to the softmax function, which converts the logits zk into a normalized 
probability distribution across the K classes (in this case,K =  2 for CO and PD). The softmax function is given in Equation
(5).

Yₖ = exp zₖ
Σⱼ = 1ᴷ exp zⱼ

                                                                                                                                    5

This ensures that all output values are between 0 and 1 and that they sum to 1, making them interpretable as 
probabilities. The model is trained by minimizing the categorical cross-entropy loss, which compares the predicted class 
probabilities yi,k̂  with the true class labels yi,kThe loss function is defined in Equation (6).

L =  −  Σᵢ = 1ᴺ Σₖ = 1ᴷ yᵢₖ log ŷᵢₖ                                                                                                                               6

In this equation, N the number of training samples and k is the number of output classes.yi,k Equals one if the sample i 
Belong to class k and otherwise. yi,k̂  is the predicted probability for class k Minimizing this loss enables the CNN to adjust 
its parameters and improve classification accuracy.

2.5 Performance Evaluation
The classification performance of the model distinguishing gait patterns in PD and CO groups was assessed 

using several key metrics: accuracy, sensitivity, specificity, precision, recall, and F1 score. These measures were 
derived from the confusion matrix, which provides counts of true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN). Specificity, representing the model's ability to correctly identify 
negative cases, is determined by Equation (7). Sensitivity, or recall, reflects the percentage of correctly identified
positive cases, calculated using Equation (8). Accuracy measures the overall effectiveness of the model across all
classifications and is computed as shown in Equation (9). Precision, which indicates the proportion of correct 
positive predictions among all positive predictions, is calculated using Equation (10). Finally, the F1 score, a 
harmonic mean of precision and sensitivity, balances these metrics, as shown in Equation (11). These 
evaluations provide a comprehensive analysis of the model's performance in classifying PD and CO groups 
based on gait data.
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Equations:
Specificity = 

∑n
i TNᵢ

∑n
i TNᵢ + FPᵢ

                                                                                                                      7

Sensitivity = 
∑n

i TPᵢ
∑n

i TPᵢ + FNᵢ
                                                                                                                      8  

Accuracy = 
∑n

i TPᵢ + TNᵢ
∑n

i  (TPᵢ +  TNᵢ +  FPᵢ +  FNᵢ))
                                                                                                    9

Precision = = ∑TP
∑TP + FN

                                                                                                                          10

F1 Score = 2 × Precision × Sensitivity
Precision + Sensitivity                                                                                                    11 

 
3. Result:
      In this study, MATLAB 2022b was used for data preprocessing, augmenting data, and training the Deep learning 
model for classification.

3.1 Statistical Analysis
      Figure 4 shows clear differences in gait signal patterns between the CO and PD groups across both time and frequency 
domains. The CO signals are marked by consistent amplitude and regular stride intervals, indicating stable and rhythmic 
gait. In contrast, the PD signals show reduced amplitude and irregular timing, which are common signs of bradykinesia and
freezing of gait. When viewed in the frequency domain, the CWT spectrograms for CO display well-organized, compact 
energy bands, while those for PD are more scattered and fragmented, reflecting tremors and inconsistent stride rhythms. 
These findings are consistent with results from [17], where spectrograms and box models were used to distinguish between
different gait patterns.

Fig. 4: comparison of time and frequency domain gait signals for CO and PD

3.2 CNN Model Training Progress
       Figure 5 illustrates the progression of the CNN model during training, achieving a final validation accuracy of 93.48% 
after 90 iterations over 30 epochs. The initial learning rate was set to η = 0.001, ensuring a stable convergence of the 
optimization process. The training objective was to minimize the categorical cross-entropy loss function, as defined in 
Equation Y, where N = 90 represents the total number of training iterations and K = 2 denotes the binary classification of 
the two classes: CO and PD. Here, yᵢₖ indicates the true label, while ŷᵢₖ corresponds to the predicted probability for class k.



ICBES 152-6

Fig. 5: Data collected using a Ground reaction force sensor.

3.3 Confusion Matrix for the CNN Model
      Figure 6 illustrates The confusion matrix for the validation data, as shown in Figure X, provides an overview of the 
model's performance in distinguishing between the CO and PD groups.CO: Out of 19 samples, 17 were correctly classified 
as CO, achieving an accuracy of 89.5%. However, two samples were misclassified as PD, accounting for a 
misclassification rate of 10.5%.

Fig. 6: Validation Confusion Matrix for the CNN Model
PD: Out of 27 samples, 26 were correctly classified as PD, achieving an accuracy of 96.3%. Only 1 sample was 

misclassified as CO, corresponding to a misclassification rate of 3.7%.These results demonstrate the model's robustness in 
distinguishing between CO and PD groups. The high classification accuracy and low misclassification rates highlight the 
reliability of the CNN model in analyzing gait patterns associated with neurodegenerative disorders.

3.3 Classification Results
      Table 2 presents the performance metrics of the CNN model in classifying gait patterns between healthy controls (CO) 
and Parkinson’s disease (PD) participants. The model achieved a strong overall validation accuracy of 93.48%, indicating 
its effectiveness in binary classification. Precision for PD was higher (96.30%) compared to CO (89.47%), suggesting the 
model was slightly more confident and correct when predicting PD cases. In contrast, the sensitivity (recall) for CO was 
94.44%, slightly exceeding PD at 92.86%, showing the model's strength in correctly identifying true positives in both 
classes.
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Table 2: performance metrics for the CNN model
Metric CO PD

Validation Accuracy (%) 93.48 93.48

Precision (%) 89.47 96.30
Sensitivity (%) 94.44 92.86
Specificity (%) 92.86 94.44
F1 Score (%) 91.89 94.56

Specificity values were closely matched across both groups, with 92.86% for CO and 94.44% for PD, demonstrating 
the model’s capability to reject negative cases correctly. The F1 Score, which balances precision and recall, further reflects 
the robustness of the model — 91.89% for CO and 94.56% for PD. These consistent results across all metrics confirm that 
the CNN model, combined with CWT-based spectrogram features, effectively differentiates gait patterns associated with 
PD and healthy aging.

3.4 Discussion
      This study confirms the effectiveness of CNN in classifying gait patterns between PD and CO using vGRF and CWT 
spectrograms, achieving 93.48% accuracy. Unlike traditional ML approaches [7] and IMU-based models [9], which rely on
handcrafted or sensor-fusion features, the CNN automatically extracts meaningful patterns, improving reliability. A 
TensorFlow Lite-based mobile app is under development for real-time deployment. Future work should incorporate multi-
modal data and broader validation for enhanced clinical relevance.

 4. Conclusion
      This study proposed a deep learning approach to classify gait patterns in older adults using vGRF signals. With CWT-
based spectrograms and a CNN model, the system effectively distinguished between PD and CO groups. The model 
showed high accuracy and reliability in capturing key gait differences. To support practical use, the trained model was also 
deployed in a mobile app for real-time gait monitoring. These results highlight the potential of combining vGRF and DL 
for early detection and remote assessment of gait disorders in aging individuals.
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