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Abstract - Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by joint pain, stiffness, and reduced mobility,
significantly impacting patients’ quality of life. Accurate and continuous monitoring of hand mobility is crucial for assessing disease
progression and therapy effectiveness. Traditional assessment methods often rely on subjective patient reports or sporadic clinical
evaluations, leading to potential gaps in data and delayed therapeutic adjustments. This paper introduces a pose-based method for early
detection and monitoring of psoriatic arthritis by analyzing hand closure movement videos recorded on smartphones. The proposed
framework utilizes the Google MediaPipe Hand model to extract 3D hand joint coordinates from video sequences, which are then used
to compute closing and stretching scores of the hand. These scores are derived using distance-based and angle-based metrics to quantify
finger mobility, with a dedicated quality control mechanism ensuring that only videos meeting specific orientation and frame criteria are
analyzed. Datasets comprising psoriasis patients and healthy individuals reveal that while the closing score offers robust and normalized
measurements independent of anatomical variability, the stretching score requires lateral-view recordings for improved sensitivity. The
results underscore the potential of this non-invasive, real-time tool to aid in early clinical intervention and long-term disease management.
Future work will focus on integrating lateral-view analysis and joint thickness measurements for enhanced diagnostic accuracy.
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1 INTRODUCTION
Psoriasis is a chronic inflammatory skin disease that affects approximately 2-3% of adults in Western populations, with

an estimated 2 million affected individuals in Germany alone [1] [2]. While psoriasis primarily affects the skin, up to 30%
of patients also develop psoriasis arthritis (PsA) [3], which affects not only the skin regions but also the joints, significantly
impacting the quality of life [1] [4]. A significant challenge in managing psoriasis arthritis is the delay in diagnosis. Many
patients experience arthritis symptoms several years before being diagnosed with PsA [3]. Zabotti et al. found that 58.9% of
patients reported inflammatory symptoms in the months immediately prior to PsA diagnosis [5]. Given the potential for PsA
to result in significant joint damage in its later stages, if such damage could be prevented with appropriate treatment, early
detection and diagnosis are of the utmost importance [6]. The symptoms associated with psoriatic arthritis often accompany
joint inflammation and functional impairment in the patient’s hands [5]. Krueger et al. pointed out that about 66% of psoriatic
arthritis patients have difficulty using their hands [7]. This finding is particularly pertinent to the present analysis. PsA is a
condition that manifests in periods of rapid deterioration, known as flare-ups [1]. The objective of this study is to utilize the
uploaded videos of hand-closure movements by patients to analyze the mobility of their fingers using pose estimation models.
This approach has the potential to serve as an accessible tool for the early detection of disease deterioration, thereby
enhancing the overall management of PsA.

2 RELATED WORK
Recent advancements in pose estimation models have paved the way for the development of novel medical

applications. Simple smartphone recordings can be used to monitor human development, optimize performance, prevent
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injuries, and track motor progression in individuals with neurologic diseases [8]. During the COVID-19 pandemic, eHealth
applications played a crucial role in patient communication and disease monitoring for individuals with chronic conditions,
demonstrating promising results [9]. Telemedicine allows patients to make regular remote health status updates, which can
be used to respond rapidly to illness exacerbation [10]. Pose estimation is another tool that can be integrated into smartphone
applications for disease monitoring. For example, it has been applied to predict osteoarthritis by analyzing sit-to-stand videos
[11] and to track knee kinematics in individuals with a history of stroke, aiding in rehabilitation monitoring [12].
Additionally, studies on Parkinson’s disease have demonstrated the potential of hand movement tracking to diagnose and
monitor musculoskeletal and neurological disorders. Butt et al. utilized RGB-D data to analyze tremors and bradykinesia,
thereby providing quantitative assessments of motor function [13]. Phatak et al. employed convolutional neural networks
(CNNs) on standardized smartphone photographs from arthritis patients to detect inflammation in three hand joints. They
used the MediaPipe hand pose estimation technique to identify the relevant joints of the middle and index fingers, as well as
the wrist joints, within the image [14]. For Psoriatic Arthritis (PsA), the Psoriasis Area and Severity Index (PASI) score is
the highest validated score for quantitative evaluation of the clinical severity of psoriasis [15]. It evaluates both the extent of
affected areas across the body and their level of severity. However, these approaches to monitoring disease progression rely
on specialized hardware and often require medical personnel, limiting their applicability in nonclinical real-world settings.

2.1 Handpose Estimation Models
A multitude of models exist that possess the capability to estimate hand poses and determine the coordinates of hand

joints within a specified frame. For instance, OpenPose [16] is a real-time multiperson 2D pose detection system, including
body, foot, hand, and facial keypoints based on part affinity fields. Another robust model, V2V-PoseNet [17], offers highly
precise 3D hand pose estimation by incorporating RGB image data and depth information. However, while being a very
precise model, V2V-PoseNet is not very practical for our use case, as it requires RGB-D cameras, whereas we use smartphone
recordings. OpenPose, on the other hand, only estimates 2D coordinates. Google’s open-source MediaPipe Hand framework
[18] [19] [20], with a focus on mobile deployment, provides an efficient alternative. A notable advantage of the MediaPipe
Hand Tracking model (GMH) is its capacity to estimate a z-coordinate while maintaining a lightweight design, enabling its
use in real-time applications on mobile devices. The joint points of the hand are determined for each video frame and
subsequently made available as 3D coordinates. The GMH model is comprised of two subtasks. Initially, a palm detection
sub-task is initiated, which endeavors to ascertain the position of the palm and delineate a bounding box around it. Subsequent
to this, a hand landmark model is engaged, operating on the provided bounding box to generate 2.5D landmarks [18]. The
model was trained with over 6,000 images from an in-the-wild dataset, an in-house collected dataset consisting of various
hand gestures (10,000 images), and 100,000 images extracted from video data [18]. The GMH model demonstrates
considerable promise in terms of its accuracy, particularly regarding its minimal hardware requirements, exhibiting an
average precision of 95.7% [18]. By assessing dynamic exercises, such as the Hand Opening-Closure movement, the
MediaPipe Hand Tracking model exhibits high temporal and spectral consistency with the gold standard [21]. The GMH
model has the potential to be used in clinical applications, having a particularly high accuracy in tracking open-closure
movements of the hand. Further adjustments, like adding a depth camera to the GMH model, can even further improve the
model's effectiveness for clinical applications [21].

3 METHODOLOGY
The methodology employed in this research involves the analysis of a video recording of a fist closure, which is defined

as the repetitive opening and closing of the hand. We extract the joint points of the hand from these video recordings
using the GMH model [19]. Given the utilization of patient videos of domestic origin, characterized by non-standardized
video inputs and the potential for suboptimal quality, alternative, more resource-intensive models might not be feasible. In
addition to its low hardware requirements, GMH’s z-coordinate estimation is crucial for measuring precise joint movements,
such as calculating angles. GMH’s ease of implementation renders it an accessible and practical choice for our application,
thus making it the model of choice for our objective. The coordinates of all joint points for each video frame are extracted
and serve as the fundamental data for subsequent calculations. These calculations include determining the velocity and
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uniformity of the hand closure, measuring the angles of the distal interphalangeal (DIP), proximal interphalangeal (PIP), and
metacarpophalangeal (MCP) joints, and calculating various distances, including the distance from the fingertips (TIP) to the
wrist. Analyzing these parameters facilitates the estimation of the extension trajectory of the fingers and provides insights
into the overall mobility of the patient’s hand.

A suitable video for the analysis is selected based on predefined quality criteria. Once the analysis is complete, the
following data are saved: the coordinates of all landmarks for each frame; the angles of the DIP, PIP, and MCP joints for each
frame; and the distance of the TIP to the wrist for each frame, which allows the course of movement to be tracked by plotting
these distances. Based on these measurements the closing and stretching scores are computed. To execute our analysis, it is
imperative to ascertain that the video, particularly the hand position, is commensurate with our calculations. Two hand
positions are distinguished: the frontal view, necessary for the closing score, and the lateral view, essential for the stretching
score, as shown in Figure 1.

3.1 Quality Criteria
For both hand positions, a set of requirements has been established to determine the hand’s orientation and assess the

video's overall suitability. In order to ensure a reliable evaluation, the video must fulfill several essential criteria. Primarily,
the hand must be clearly visible throughout the entire sequence. Furthermore, the video should contain a minimum of 60
frames to guarantee sufficient data for analysis. Moreover, a minimum of three hand closures must be performed during the
recording. Finally, and most importantly, the hand orientation must be consistent, either frontal, when calculating scores of
closures, or lateral, when calculating scores of stretches. A series of additional criteria has been formulated to ensure a robust
and precise assessment of hand orientation. For the frontal view, two specific vectors located on the ball of the hand define
a plane. The vector perpendicular to this plane, denoted as vorth, describes the frontal orientation of the hand relative to the
camera. The methodology is illustrated in Figure 2, where the vectors v0−1 and v0−17 span the plane, and vorth is shown as
perpendicular to it. It is important to note that this plane is regarded as an approximation of an optimally stretched hand,
proving useful when determining its stretching capability.

For the lateral view, the vector olat was selected, defined by the passage through the landmarks 5 and 17. This vector
facilitates accurately determining the lateral orientation, which is critical when the hand does not face the camera directly. In
addition to orientation analysis, our framework incorporates a palm recognition mechanism to differentiate between the palm
and the back of the hand. This is achieved by computing the cross product of the vectors v0−1 and v0−17; a sign change in
the cross product indicates a hand rotation, thereby enabling a reliable determination of palm versus back-of-hand
presentation.

Fig. 2: The vectors v0−1 and v0−17 span the plane, vorth is
perpendicular to the plane and describes the orientation of the hand

Fig. 1: Hand positions: frontal view (left) and lateral view (right)
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Furthermore, detecting a fist is based on a precise geometric configuration. Specifically, a finger is considered “closed”
when the distal phalanges are positioned closer to the carpometacarpal joints (CMCs) than the MCPs. When this
configuration is observed in all digits, the hand is classified as being in a closed or fist state.

In addition to these defined criteria, an overall quality metric provided by MediaPipe, termed as the general frame score,
is incorporated into our analysis. This score reflects the efficacy with which the joint points are detected and is particularly
sensitive to the visibility of the hand. A low general frame score typically indicates that the hand is not clearly delineated
within the frame, making it unsuitable for our analysis. 

Integrating these criteria into our evaluation framework not only enhances the reliability of the hand orientation
measurements but also ensures that subsequent analyses are based on high-quality and unambiguous input data. The
following Table 1 shows the criteria employed for the frontal and lateral views.

Table 1: Criteria for determining the frontal and lateral view of the hand

Criteria Frontal View Lateral View
frontal orientation > 0.85 < 0.5
lateral orientation ✗ > 0.70

palm detection ✔ ✗
general frame score > 0.85 > 0.65

4 STRETCHING AND CLOSING CAPABILITIES OF THE HAND
4.1 Stretching Score Calculation

Two distinct methodologies are employed to ascertain the stretching score, which describes the opening capabilities
of the hand.

Distance-based method: To assess the stretching capability of the hand, the distance d from the fingertips to the plane, as
shown in Figure 3, is calculated for all TIP joint points. The smaller this distance, the higher the score for the extension.
Furthermore, for each finger identified as closed, the stretching score for that finger is set to 0. This is significant because the
distance decreases in fully stretched and closed positions. The extension is deemed optimal (score = 1) if a joint point falls
below the predefined threshold t1. Conversely, if it exceeds the threshold t2 (or if the finger is found to be closed), the score
is 0. These thresholds, t1 and t2, are determined empirically for each finger.

Fig. 3: Determining the stretching score with the TIP to plane distance (left) and the angles (right)
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Angle-based method: A second method of determining the stretching capability is to look at the angles ω of the DIP, PIP,
and MCP joints, as depicted in Figure 3. These can be computed by looking at the adjacent landmarks. An angle ω close to
180° means it’s fully stretched, and an angle ω between 0° and 90° can be seen as fully closed. Similar to the distance-based
method, the maximal angles are determined and mapped to a score between 0 and 1. The final stretching score is obtained
by taking a weighted average of the three angle scores, with slightly more importance given to the scores of ωMCP and ωPIP.

4.2 Closing Score Calculation
Analogous to the initial distance-based stretching score method, a closing score can be determined by tracking the

distance from the fingertips to the wrist. This score serves as an indicator of the hand’s closing capabilities. As with the
stretching score, smaller distances indicate higher scores, and thresholds are employed once more to map the actual distance
to a closing score. If a finger is not recognized as closed, the score for that finger is designated as 0. In the context of
absolute distances in the frontal view, the depth of the hand exerts a substantial and undesirable influence. To ensure the
independence of distances from the z-coordinate, a division of the actual distance-value by the sum of the vectors v0−5 and
v0−17 is necessary. This results in a more stable relative distance. By plotting the scaled TIP-to-wrist distance for each frame
and finger, as shown in Figure 4, we get a useful graph for tracking the movement of the hand when opening and closing. 

Additionally, we apply peak detection to find the minimum distance to the wrist and calculate the average of the
minima to get a more stable value. This mean distance is then employed as the metric for assessing the closing score of a
video. Furthermore, we can use the peak points to determine the number of hand closures performed in a video.

Fig. 4: TIP-to-wrist distance plotted with peak detection for each frame and finger of a healthy patient (left) and an affected 
patient (right)

5 EXPERIMENTS
To evaluate the developed methods, we conducted experiments using two distinct datasets. The first dataset comprised

video recordings from 35 psoriasis patients, resulting in approximately 400 videos. The number of videos per patient series
varied significantly, ranging from 1 to 92 videos per series. All patient videos were recorded from a frontal view, which poses
a challenge when applying the developed stretching score methods, as these methods are specifically designed for lateral
view recordings. Additionally, we analyzed an in-house dataset containing approximately 120 video recordings of healthy
individuals recorded under standardized conditions from frontal and lateral perspectives.
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       Fig. 5: Comparison of the closing score of an affected and a healthy patient for each finger over a period of 17 months

Figure 5 illustrates the closing score over a sequence of 85 video recordings, comparing the fist-closing performance
of a psoriasis-affected patient with that of a healthy individual. The closing score, ranging from 0 (no closure) to 1 (complete
closure), quantifies the ability of each finger to perform the closing motion. The plot displays the average closing score of all
fingers for both the healthy subject (cyan curve) and the affected patient (red curve), alongside individual finger scores—
index (purple), middle (orange), ring (green), and pinky (blue). The healthy subject demonstrates consistently high closing
scores, with minimal variation across videos, indicating stable and complete finger closure. In contrast, the affected patient's
finger scores exhibit significant fluctuations and generally lower values, particularly noticeable in the middle segment of the
video sequence (video numbers ~20–60), suggesting impaired and variable motor performance. Notably, the pinky and ring
fingers show the most significant deviation from the healthy baseline, highlighting potential finger-specific functional
limitations due to the disease. The mean closing score for the patient remains consistently below that of the healthy individual,
validating the score's sensitivity in capturing motor impairments associated with psoriasis.

5.1 Stretching Score Extraction from Frontal View Recordings
Since the developed stretching score methods require lateral view recordings, an intuitive alternative for frontal view

videos would be to measure the TIP-to-wrist distance. In contrast to the minimum distance utilized in calculating the closing
score, the maximum distance would be used instead. However, this approach exhibits significant limitations. One major
drawback is the inherent variability introduced by finger length differences, as individuals with longer fingers naturally
achieve higher maximal values. This results in inconsistencies and complicates the establishment of a standardized stretching
score. Additionally, the approach lacks sensitivity in the near-full-stretched range, where the TIP-to-wrist distance changes
only minimally. Consequently, the frontal view method proves inadequate for precise stretching score determination. Given
the limitations of the frontal view approach, we developed two alternative methods for calculating the stretching score,
tailored explicitly for lateral view recordings. In contrast to the stretching score, the closing score is inherently bounded, as
the minimal distance between the fingertip and wrist is consistently zero, regardless of finger length. This characteristic
ensures consistent mapping and high sensitivity in the range close to full-finger flexion. Therefore, the closing score method
is more suitable for accurately capturing extension variations.
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6 DISCUSSION
The experimental results indicate that the TIP-to-wrist approach in frontal view for calculating the stretching score

is fundamentally flawed due to the variability introduced by finger length and the lack of sensitivity at near-full extension.
These limitations became evident during the analysis of patient videos, where inconsistencies in scoring were prominent,
particularly in individuals with longer fingers. This finding emphasizes the critical need for a lateral view setup to ensure
reliable stretching score assessments. The introduction of the closing score method in frontal view demonstrates clear
advantages over the stretching score method using the maximum TIP-to-wrist distance. Its inherent bounded nature allowed
for consistent scoring irrespective of finger length, and the method’s sensitivity in the critical range near full flexion made it
highly effective for precise mobility assessments. Furthermore, the visual analysis of extension progression confirmed that
healthy individuals displayed smooth, continuous curves, while psoriasis patients exhibited irregular patterns indicative of
impaired mobility, as shown in Figure 4. The robustness of the closing score method was further demonstrated through
longitudinal tracking, as shown in Figure 5, where the progression of finger mobility over a 17-month period was clearly
observable. Applying a moving average filter improved data interpretation, highlighting gradual changes over time. These
findings validate the suitability of the closing score method for long-term monitoring and comparative studies between
affected and healthy individuals. In summary, the experimental results substantiate the effectiveness of the closing score
method as a reliable alternative to the stretching score in the frontal view approach.

7 CONCLUSION & FUTURE WORK
This study aimed to monitor disease progression in psoriasis patients by analyzing homemade videos to track the

overall flexibility in their fingers. To this end, we have developed methodologies to quantify each finger’s closing and
stretching capabilities. These methodologies have been instrumental in quantifying the numerical score values and generating
diagrams that offer valuable insights into patients’ extension capabilities. By plotting the scores across a video series, we
obtained a meaningful way to track the patient’s finger flexibility progression, which is an essential parameter because limited
finger flexibility is strongly associated with the onset of psoriasis arthritis. This methodology can be utilized not only to
monitor treatment progression but also to inform clinical decision-making. At present, our dataset of affected patients
primarily consists of frontal-view recordings, which have proven suboptimal for the analysis of stretching capabilities.
However, we have described two promising alternative methods that can be used in lateral-view recordings to more
accurately determine a stretching score from hand-closure recordings. Extending our dataset with lateral-view recordings
from psoriasis patients will facilitate further evaluation and improvement of the tracking capabilities of our methods. In the
context of hand analysis for patients with PsA, another promising parameter that merits investigation is finger joint
thickness. This is because joint swelling in the fingers is also one of the first indicators of a progression toward psoriasis
arthritis [22] [6]. To further enhance our analysis, we aim to develop methods to measure joint thickness, as it can also be
extracted from the video material we already have. Incorporating this additional parameter can facilitate the early detection
of disease deterioration, thereby enhancing the efficacy of disease monitoring. 
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