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Abstract - Many factors, such as excessive noise and artifacts, contribute to the low-quality standards commonly encountered
while interpreting Seismocardiography (SCG) signals. In this work, different types of digital filters are used to process SCG signals, and
their performance is assessed in the study. Among the filters investigated were the multistage filters: the Butterworth filter (BF),
Chebyshev filter (Cheby), wavelet transform (WT), Principal Component Analysis (PCA), Independent Component Analysis (ICA),
Empirical Mode Decomposition (EMD), Variable Mode Decomposition (VMD), and Continuous Wavelet Transform (CWT) methods
were also analysed. Performance evaluation was based on performance metrics such as Signal-to-noise Ratio (SNR), Peak Signal-to-
Noise Ratio (PSNR), Peak Relative Difference (PRD), Structural Similarity Index (SSIM), and mean square error (MSE). The
experimental results highlight the advantages and limitations of each filter technique. A thorough assessment of these techniques in SCG
signal processing is provided. The study highlights which filters can be used effectively to obtain significant information from the SCG
signals which will contribute and assist the future studies and applications.
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1. Introduction
Seismocardiography (SCG) signal is a non-invasive method to investigate the mechanics of cardiac activity. SCG

studies often encounter signal distortions due to noise and artifacts which hinder essential diagnostic information. Such
sources of noise may include but are not limited to muscle contraction, respiration, and exterior electrical signals. Such
disturbances complicate the process of retrieving useful information in the form of SCG signals; thus, we need the appropriate
signal processing techniques.

By extension, the fundamental principle of filtering is based on the need to improve the signal-to-noise ratio and as a
result, enhance the quality of the signal and its interpretation. Typically, Butterworth filter (BF), wavelet transform (WT) are
common techniques for signal denoising due to their reliability and straightforwardness. Other approaches, such as Principal
Component Analysis (PCA), Independent Component Analysis (ICA), Empirical Mode Decomposition (EMD), Variable
Mode Decomposition (VMD), Deep neural networks (DNN), and Adaptive filtering (AF) [1-7] provide more sophisticated
ways of signal denoising and enhancing detection of critical features. The choice of the filter is contingent on the attributes
of the signal being analyzed. There is every opportunity to effectively increase the clarity of the signal, which makes it
possible to detect those important features that are helpful in diagnosing and treating diseases or disorders of the heart. If no
suitable filtering is applied, noise and artifacts lead more probable to avoidable errors and misleading conclusions.

2. Literature Review
There are many types of filters which could be employed in eliminating noise and interference associated with the

heart signal. Noisy signals can be expected to produce misleading results or incorrect diagnoses when interpreting heart
conditions. For instance, muscle noise can create artifact spikes in the muscle activity which look like heart events which are
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abnormal. In the same way, fluctuations in a framework wave signal can be caused by electromagnetic emissions that
interfere with the desired portions of the waveform. Hence, filtering is important in the analysis and interpretation of
biomedical signals because it removes noise and other artifacts and thereby increases analysis accuracy.

While discussing the noise challenge in bio-signals and the focus on denoising as a necessary condition in diagnosis,
the authors employed wavelet transformation to eliminate noise in the ECG and EEG signals [8]. The work set out to compare
two algorithms for denoising and found the wavelet approach of signal reconstruction to be superior to the wavelet approach
of noise reconstruction. The evaluation covered a range of mother wavelets and initialized filters and noted that the Symlet-9
wavelet produced the best results. It also noted that for the ECG signal the Chebyshev Type I filter outperformed the Type II
filter although for the EEG signals, both showed distinctive parameters.

The other research aimed at reducing the motion noise, the authors used a dual accelerometer sensor configuration to
test different positions of the sensors during minor movements and walking of the patients [9]. It was concluded that the
double attachment of accelerometers is a more appropriate technique than the single sensor method predominantly applied
especially in the signal-to-noise ratio improvement attributes. The study concluded that the best results for detection of SCG
waveforms were obtained when the sensors were mounted horizontally. However, it was also found that the motion artifact
due to walking could be reduced but not removed and that the effectiveness of the techniques for noise removal depends on
the location of the sensor and the frequency of the motion noise.

An adaptive recursive least squares filter (ARLSF) was proposed [10] to remove motion artifacts from SCG signals.
This was accomplished on 16 subjects who performed standing and walking on a treadmill, both SCG and magnetic scans
were received. It has been proven that the filter was able to extract the heartbeat and motion artifact signals and the data
obtained post-filtering served as the reference channel for the ARLSF algorithm. The method was able to detect heart signals
with an accuracy of 98% including heart rate estimation while standing as well as walking.

As a different method for noise reduction of SCG signal and artifacts, a two-stage Kalman filtering (KF) model was
used [11]. The methodology consisted of KF1 in minimizing the noise from the signals and estimating chest wall
displacement and chest wall velocity during the different cardiac phases. Subsequently, KF2 removed low-frequency artifacts
from the output of KF1. The proposed method achieved an average normalized cross-correlation of 94% for signals with a
15 dB input SNR and demonstrated superior performance compared to existing methods in terms of noise suppression while
preserving diagnostic features.

In addressing motion artifacts located in the SCG signal, a process in which the SCG signal acquired from 40 people
while in motion was analysed using normalized least mean square adaptive filtering has been reported [12]. Interestingly, the
recognition rate for the use of this technology was 98%. Application of this technology eliminated external disturbances
tracing their 32 kernel properties that proved to be the best for 32 kernel properties to a window for continuous monitoring.

The goal of this paper is to augment the robustness of the SCG signals processing through the utilization of different
filtering approaches that help in the VHD recognition process. Different filtering methods have been used in the literature to
remove noise from biomedical signals such as BF, Chebyshev filter (Cheby), WT, PCA, ICA, EMD, and VMD. But even
with that, there are still challenges to use them for SCG signals. These obstacles greatly impede the accuracy and the
reliability of our data analysis. We also wish to employ the CWT to denoise SCG signals. Such an advantage of this method
lies in its ability to perform signal analysis across a range of scales therefore improving its overall resolution with appropriate
filtering of the noise from the relevant signal. With this unique approach, the specific focus resides in high frequency
components, which are often the most annoying noise for any SCG study. The objective of the study was to enhance the
diagnostic quality of SCG signals by reducing noise in the signals and artifacts and thus contribute to the discipline. This
study is also an attempt to explore the new frontiers of existing denoising techniques while reinforcing the importance of
filtering during the processing of any biomedical signals.

3. Materials and Methods
The data obtained from different patients with Cardio-Mechanical relevant work published by [13] has been included

in this research. It includes a dataset of 100 people suffering malfunctions of valves of the heart. They were recorded in China
and United States. The information concerning data CP-01 to 70, UP-01 to 21 was obtained at the sampling rate of 256Hz
and those of UP-22 to UP-30 were sampled at 512 Hz. The use of filtering methods in signal processing draws much attention
and is practically necessary to improve the quality of physiological data. Noteworthy, such filters were used in study to clean
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the SCG signal.  In the first place, the low frequencies were dealt with using a 1 Hz cutoff high-pass Butterworth filter which
was applied to reduce baseline drift. For further signal processing, this signal is viewed as a reference signal. The pre-
processing step comprehensively aids in the identification of useful and meaningful details from the SCG signal.

The Butterworth bandpass filter is widely used in the preprocessing of SCG, among others, to filter out noise and
unwanted frequency components. The cut-off values for SCG of 0.5 Hz to 100 Hz were selected after preliminary analyses
because they cut across the significant frequency bands recorded in SCG and still optimize computational resources.
Furthermore, frequency modification can be done using the Butterworth high-pass filter. As the order increases so does the
attenuation and the steepness of the transition band width. Thus, order of the filter should depend on specific order as well
as the complexity of the system. In this manner, by adjusting these parameters for noise removal, the analysis of the SCG
signal is made extremely credible since premise drift as well as noise have been effectively removed by the Butterworth
filter. The order of the filter in this study was 2. 

In this study the bandpass Chebyshev filter was used for the purpose of preprocessing SCG signals, considering that
such filter can eliminate unwanted frequencies and noise. There are unwanted frequencies in SCG signals, and the principal
task of the filter is to eliminate the frequencies outside the passes which can be defined. These defined cuts are also set during
the analyses of preliminary results and were designed to lie between 0.5 Hz and 100 Hz. In this study, we have selected for
the quadratic Chebyshev filter which has the benefits of moderate roll-off and minimal phase distortion. This type of filter is
expected to provide stability and robustness in filtering SCG signals to allow for the relationships to be maintained and hence
enable analysis that does not run the risk of being overfitted with noises. Second-order filters are also easy to implement and
computationally inexpensive which makes them suitable for real-time applications whilst assuaging chances of performances
against the SCG signal.

Wavelet de-noising is one of the techniques which can help in cleaning biomedical signals [14]. This is achieved
through a method known as wavelet transform which expands the signal into its various frequency components. Wavelet
coefficients that exceed the noise components are set to a threshold. Wavelet denoising can be useful for removing noise and
artifacts from SCG signals in patients with VHD. However, it does require the right family of wavelets and thresholding
parameters for best denoising. Artifacts can be defined as strong influences on the wavelet coefficients such as high frequency
noise or abrupt peaks in amplitude range. Since the wavelet coefficients are sensitive to the movement of these artifacts, the
artifacts may be extracted from the SCG signal. The SCG signal is recorded in 3 (X-Y-Z) directions, while the Z axes is
treated as the raw SCG signal. For the purposes of reaching the filtering threshold, the SNR is computed for a threshold
varying from 0.01 to 1.0 whilst aiming to determine the appropriate filtering threshold. The threshold that gives the greatest
SNR is the preferred threshold as it, in essence, gives the best denoising. Generally, the threshold that resulted in the highest
SNR is defined as the 'Optimal Threshold'. In this case the selection of the optimal threshold for denoising is based on this
data driven algorithm which eases noise removal in SCG signals. The signal is decomposed with the help of Sym6 wavelet
up to six levels. This wavelet has a greater likeness to the SCG signal. Coefficients result from the decomposition which
represent different frequency components within the signal at different scales. Next, a threshold value is fixed against each
of the coefficients, except for the first which refers to the approximating of the coefficients. The remaining coefficients were
used to reconstruct the signal at last after denoising.

According to [3], ICA is an effective approach for noise reduction as it enables a clear distinction between the signal
and noise parts. It decomposes the signal into its major building blocks and discloses the signal’s configuration. SCG signal
usually contains a mixture of signals which include the mechanicals of heart muscles contraction and other noise sources and
disturbances such as motion artifacts from due breathing and other body movement. Now, as we stated before, we have the
SCG signal in three different directions which would be x, y and z. In practice, it is stated that when ICA is applied on single
sensor data (recorded in 3D), the x, y and z data is treated as 3 different channels. Though it is still a single sensor, each axis
viewpoints of the relevance signal trace a close representation of the signal. This can be compared to administering multiple
sensors, each of which looks from a completely different view of the picture to explain the scenario. When employing ICA
in examining baseline SCG signal with different axes x, y and z, it enabled in identifying the major components which are
responsible for a direct correlation to the changes in the SCG signals. Finally, noise and artifact components may eventually
be suppressed, however, only those components which represent the heart mechanical activity are left. We investigated the
applicability of kurtosis when selecting the denoised signals derived from Independent Component Analysis of SCG signals.
The Kurtosis is defined as a measure of the ‘tailedness’ of a probability distribution and is usually correlated with the
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Gaussianity of the signal. Based on the value of kurtosis, the signal can be classified into three categories: (a) sub-Gaussian
(K < 3; when the signal is not too spiky), (b) super-Gaussian (K > 3; where the signal is more spiky than a Gaussian), (c)
Gaussian (K = 3; which describes the situation where the signal is biased by a noise) [15]. The measurement of the
components with kurtosis values close to K=3 is interpreted as noise.

This criterion applies in such a way as to not only improve the signal-to-noise ratio but also inhibit the loss of useful
physiological information. The implications of the success of this particular methodology demonstrate context as well as the
ability of the denoising algorithm to exploit non-Gaussian elements and support the enhancement of the whole SCG signal. 

PCA is a very efficient decomposing process which disambiguates a multivariate signal into distinct non Gaussian
signals [16]. It was used to decompose the SCG signal into principal components, enhancing the extraction of relevant cardiac
features. Components were evaluated using kurtosis, with higher values indicating more diagnostically significant signals

EMD technique is a method employed in signal processing for filtering signal. It entails decomposing the signal into
the intrinsic mode functions which stand for individual oscillatory modes within the signal [17]. EMD decomposes the SCG
signal into its Intrinsic Mode Function (IMFs) which denote different aspects of the signal. To pick out the most informative
IMFs, we computed the entropy for each of the IMFs, indicating their degree of information as content and demand of its
execution. The threshold entropy was usually the mean of all IMF entropies which is recommended. Entropy is a scalar
measure and IMFs with values exceeding this threshold scalar were chosen to reconstruct the filtered output signal. This
means that because of the provision of the threshold, scarcity of meaning imf’s was made minimizes and only those imfs
which were of meaning retained in the SCG signal succeeded. By concentrating attention on IMFs with higher entropy, it
aims at preserving the SCG signal components associated with more meaning information overload on the signal and
improving the filtration quality of the SCG signal in readiness for further analysis and diagnostic. Given this, the most useful
IMFs will be those selected based on their content information due to the flexibility offered by the use of this approach in
EMD troubles SCG signal processing.

VMD is a signal processing method employed to separate a broader signal into its constituent components which are
called modes that encompass different frequencies and oscillatory behaviour. Because VMD is informative and signal
adaptive, it is suitable for the fixation of a complex and transient signal such as the SCG signal[18]. It defines some
parameters like ‘alpha’, ‘tau’, and ‘K’, where ‘alpha’ is the bandwidth constraint, ‘tau’ is the noise tolerance level, and ‘K’
is the number of modes considered. The parameters of VMD for SCG signal processing were chosen with a preference against
variation and included beta = 2, tau = 2, and K = 3. Since the VMD serves as a filtering tool, the VMD is able to suppress
some modes out and only leaves important modes or filtered modes for further processing. The modes can be held as
exceptional elements that explain the signal and thus phenomena that are related to physiological or mechanical processes.
The algorithm zone induces each mode with some frequencies that are employed in examining particular frequencies of the
SCG signal within its frame. After this step, the mode frequencies are established afterward, and the last frequency known
as the inaudible frequency is the first to be stripped from the signal. The limitations of the VMD filter are affected to some
extent by the parameters of VMD and also the modes chosen. It is important only to consider optimal parameters for the
VMD filter after careful tuning of the filter parameters along with the validation of the select filter on a validation dataset.
Through an intelligent and systematic iterative procedure, it is possible to select optimal parameters for the VMD filter that
yield the desired performance with respect to the target dataset or problem.

To denoise SCG signals, CWT can be precisely described as a joint time-frequency signal analysis technique which is
useful in effecting the analysis of various signals in both time and frequency scale simultaneously [19]. It allows for the
comprehensive tracking of changes in the frequency components of a signal through time. The first step in this more effective
way of SCG signal denoising by CWT is to identify the locations of the noise components that distort the quality of the
signal. The ability to analyse signals in the frequency domain is one of the greatest benefits of the CWT. Once the frequency
characteristics of the signal are analysed, it is possible to identify the noise components from the targeted signal components.
To eliminate the noise components, appropriate coefficients associated with these components are specifically suppressed in
CWT images. The method allows removal of the noise and ensures that the stripped CWT presentation is concentrated on
the signal components of interest. Also suppressed are noise components that are outside the target frequency range band
which is from 0.64 to 76.8 Hz to further strengthen the efficiency of the denoising.

For practical implementation, the method is applied to the entire signal in short durations to expedite calculations.
Each cycle, approximately 10 seconds long, is subdivided for localized analysis. Due to the distributed nature of scale-
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dependent analysis, each segment undergoes CWT independently for noise suppression, and the processed segments are then
combined to reconstruct a noise-free SCG signal.

4. Results
In this paper, we assess various approaches to remove noise SCG signal. The methods used were Butterworth Filtering,

Chebyshev Filtering, Wavelet Transform, PCA, ICA, EMD, VMD and Adaptive Frequency Filtering via CWT to clean the
SCG signal and assess their results. Due to segmentation of the signal, the task of denoising is less complex computationally
and reliably removes noise components. Using high-pass Butterworth filter with cut-off frequency of 1 Hz along with the
rest of the denoising techniques dramatically improves SCG signal processing. This process of denoising makes it possible
to extract some useful information from the SCG signal which elevates the quality and the reliability of the acquired trials
for further analysis and interpretation. Some metrics to be used for comparison for evaluation of a denoised signal are the
following: SNR, PSNR, PRD, SSIM and MSE.

SNR stands for Signal-to-Noise Ratio. It is a measure to quantify the ratio of the strength or power of a signal in regard
to the noise level. In other words, SNR assesses the quality of a signal by comparing the level of the desired signal to the
level of unwanted noise.

The formula for SNR is typically expressed in decibels (dB):

SNR dB = 10 *  log10 (Signal Power/Noise Power) (1)

A higher SNR means that the signal can be more clearly differentiated from noise which implies it is of better quality.
The MSE calculates the average value of the squared distortion between the original and processed (filtered) signals.

A lower MSE indicates that a level of improvement has been achieved in the quality of the processed signal. The following
is the definition of MSE:

MSE = 1
N

*  ∑
i = 1

N

(xi −  yi)2
(2)

          where xi is the originally intended signal, yi is the modified signal, and N is a quantification of the number of samples.
A low MSE reveals capped measures of distortion in the signal after filtering done to cut noise but maintaining essential
characteristics of the signal.  

The PSNR is used as a measure of quality control for the signal. It does so by defining the highest possible strength of
the signal and weighing it against the disruptive force that affects the representation of signal.

The formula for PSNR is: 

PSNR = 10 *  log10 (MAX2/
MSE) (3)

In the equation, the abbreviation ‘MAX’ refers to the highest possible signal value that can be reached. For higher
values of PSNR, better quality of the signal after filtration is comparatively achieved. 

PRD defines the measure of the distortion differences regarding the factors of two signals. By considering the raw
signal as the reference standard and utilizing the filtered signal as the processed one, PRD provides effective estimation
results for the filtering technique. The PRD is given as follows:

PRD =  
∑
i = 1

N

|xi −  yi|/

∑
i = 1

N

xi

(4)
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SSIM is one of the most widely used measures of the signal quality in the field of the signal processing. SSIM
quantifies how structurally similar the original (raw signal) and the reconstructed signal are. 

Usually, the value of SSIM lies between -1 and 1, where 1 means that the two signals are exactly the same and higher
values means better likeness. On the other hand, a high distortion between two signals which SSIM score indicates will lead
to lower perceptual quality.

SSIM (x,y) =
2μxμy +  C1 (2σxy + C2)

(μ2x + μ2y + C1)(σ2x + σ2y + C2)
(5)

In this equation, μx, μy are the mean values of signals, σ2x, σ2y are the variance and σxy is the covariance.  
Table 1 shows the overall assessment of the various methods of denoising carried out to all 70 of CP data and 30 of

UP data SCG signals. ICA was outstanding and was the only method that rendered a perfect SSIM score of 1.00 indicating
that it is able to maintain the structural similarity of the SCG signal with respect to its original even after denoising. ICA also
performed well in terms of SNR measuring 23.21, a vital factor in signal analysis because it ensures that noise is well
controlled. With respect to PSNR, ICA again comes as the best with the greatest value of 47.57 thus proving that it is accurate
in noise reduction without sacrificing peak signal quality. The other methods of denoising namely ICA, BF, WT, VMD, and
Adaptive Frequency Filtering through CWT methods also have low MSE of 0.00 showing that these methods in particular
and in general are very good at diminishing noise.

On the other hand, PCA has the worst trade-off for MSE at 0.02 which indicates high errors in noise filtering but also
high levels of distortion in the signal. As for ICA, it has the best performance with the worst value of 0.08 in PDR which
means that the value has the least deviations of the peaks and confirms its ability to preserve the integrity of the signal. For
comparison, PCA has the highest value of 1.01 of PDR which means that the signals that have been denoised have gone
through a relatively higher degree of drift which has a negative effect on the overall quality of the signal and its effectiveness
for further analysis. The Cheby filter however performs satisfactorily for the two parameters as it has SNR of 3.27 and SSIM
of 0.82 which are moderate and depict that the method has reduced the noise to some degree while retaining a reasonable
amount of the structure of the signal. The PDR value of 0.67 however indicates that it is higher which shows more peak
deviations and indicates that there is a compromise on both the integrity of the signal and its noise. In conclusion, these
findings are important in assisting in the selection of the appropriate SCG denoising methods. Based on the numerous criteria
evaluated, ICA was found to be the best. However, we are keen to recommend that the choice of method should be left to the
end user based on the requirements of the task at hand.

Table 1 : Comparison of Different Filtering Techniques

SSIM SNR PSNR MSE PDR
BF 0.95 9.71 34.09 0.00 0.34

Cheby 0.82 3.27 27.69 0.02 0.67
ICA 1 23.21 47.57 0 0.08
PCA 0.69 1.32 24.51 0.02 1.01
WT 0.95 19.23 34.94 0.0 0.13

EMD 0.87 7.83 32.32 0.01 0.47
VMD 0.98 12.23 36.98 0.0 0.25

Adaptive Frequency 
Filtering via CWT 0.95 13.34 39.84 0.0 0.24

 
Besides the quantitative evaluations that were done, figure 1 also showed some images of these filtering techniques to

provide the reader with a first impression of these techniques according to the degree in which they could protect signal
features and reduce noise. 
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Figure 1: the visualizations for the eight different filtering methods to the raw signal. Each method exhibits distinct 
characteristics in terms of noise reduction and signal preservation

6. Conclusion
In summary, this research reviewed different digital filtering methods in SCG signal processing which were intending

to improve the retrieval of useful information as well as noise and artifacts interference. Butterworth filter, Chebyshev filter,
WT, PCA, ICA, EMD, VMD and CWT were included into the study for comparison. The performance evaluation was done
using SNR, PSNR, PRD, SSIM, and MSE. 

The results of the study emphasize the necessity of a systematic selection of the related denoising methods for SCG
signals. Even though ICA offered the best performance, this decision should be made in a more comprehensive way,
considering the application specifications and the inevitable balancing between the degree of noise elimination and the quality
of signals being measured. In this sense, the integrative approach of quantitative measures, qualitative measures, and diversity
of the evaluation facilitates a comprehensive evaluation and assists in identifying the best-dominated noise removal technique
that suits the situation at hand.

To build upon existing research, Adaptive Frequency Filtering via CWT was presented as a new way of filtering SCG
signals. This technique utilizes the strength of CWT to remove unnecessary unwanted noise components in SCG signals in
both time and frequency domains, thereby enhancing the SCG analysis by targeting the removal of the time frequency
components of the high frequency noise. The extensive review of numerous filtering techniques including illustrations and
different evaluation criteria should be helpful to researchers and practitioners working in the field of biomedical signal
processing. Noise and artifacts are the aim of these filtering techniques, which are considered to enhance the SCG signal
processing techniques especially during the diagnosis of valvular heart disease. This study demonstrates a remarkable
progress that contributes towards improvement of the denoising methods by advancing the synthesis of filters for utilization
in biomedical signal processing.
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