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Abstract - Peripheral artery disease (PAD) is a progressive vascular condition requiring precise diagnostic tools for effective risk
stratification. This study presents a novel computational framework that leverages optimized volume rendering, dynamic illumination,
and quantitative vascular analysis to enhance the evaluation of PAD. The proposed system integrates real-time plaque density and
vascular curvature assessments, providing noninvasive, efficient, and accurate diagnostics. The framework offers automated clinical
decision support, reducing interobserver variability and improving diagnostic workflows. Initial validation demonstrated its ability to
classify PAD risk effectively, with plaque density averaging 0.85 and vascular curvature averaging 1.3, correctly identifying high-risk
cases within the tested cohort. This framework represents a transformative approach to PAD diagnostics, supporting early intervention
and personalized patient management.
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1. Introduction
Peripheral artery disease (PAD) is a chronic and progressive vascular condition characterized by narrowing or

obstruction of peripheral arteries due to atherosclerotic plaque buildup. Although PAD affects more than 230 million
individuals worldwide, it represents a significant global health challenge, increasing the risk of severe cardiovascular events
and limb ischemia [1]. Despite its prevalence, early diagnosis remains elusive, particularly in asymptomatic patients or those
with atypical presentations. The clinical delay in detection often leads to advanced disease stages, which are associated with
substantial morbidity and reduced quality of life. Traditional diagnostic methods, such as the ankle‒brachial index (ABI),
duplex ultrasound, and computed tomography angiography (CTA), have long been the cornerstone of PAD assessment [2].
While these techniques provide valuable insights, they are fraught with limitations. ABIs and ultrasounds are operator
dependent and often lack the sensitivity to detect early-stage disease. Advanced imaging modalities such as CTA and
magnetic resonance angiography (MRA) offer superior visualization but are resource intensive and costly and expose patients
to ionizing radiation or contrast agents. Moreover, the complexity of vascular geometries, such as calcified lesions, stenotic
regions, and tortuous arteries, poses significant challenges for accurate diagnosis and risk stratification [3]. Recent
advancements in computational imaging and machine learning have revealed transformative opportunities to address these
limitations. Techniques such as optimized volume rendering, high-dynamic-range illumination [4], and GPU-accelerated
visualization offer unprecedented capabilities in vascular imaging [5]. By enhancing spatial resolution, reducing artifacts
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from calcifications, and enabling real-time data processing, these methods allow for a more nuanced evaluation of complex
vascular geometries and plaque characteristics. In addition, emerging AI-driven algorithms have shown promise in
automating the analysis of imaging biomarkers, further streamlining diagnostic workflows [6].

Our study introduces a novel computational framework that leverages optimized volume rendering and dynamic
illumination to redefine PAD diagnostics. By integrating automated assessments of plaque density and vascular curvature,
the proposed approach addresses key diagnostic challenges, including the accurate stratification of PAD risk. The system’s
noninvasive nature, coupled with its efficiency and precision, has the potential to significantly enhance clinical decision-
making and patient outcomes. Through this work, we aim to bridge the existing gaps in PAD diagnostics by demonstrating
the transformative role of advanced computational tools. The integration of real-time visualization with automated analysis
not only advances PAD risk classification but also lays the foundation for personalized treatment strategies in vascular
medicine.

2. Materials and Methods

2.1. Real-Time Dynamic Illumination
The proposed framework integrates an advanced real-time dynamic illumination model to enhance the visualization of

vascular structures, especially in PAD diagnostics. This illumination approach uses Perlin noise to simulate the dynamic light
direction and a damped harmonic oscillator to generate realistic variations in light intensity over time [7]. These dynamic
lighting techniques improve depth perception, enhance the realism of vascular geometry, and enable a detailed visualization
of intricate anatomical structures.

The dynamic behavior of the light is controlled through mathematical formulations that adapt in real time on the basis
of user-defined parameters. The light direction is calculated using a frequency-controlled noise factor, ensuring smooth and
natural transitions. This is vital for achieving enhanced realism in visualizing complex vascular geometries. On the other
hand, the light intensity is modulated using a damped harmonic oscillator model to introduce natural decay and oscillatory
effects [8]. Together, these techniques provide a highly realistic simulation of lighting, significantly improving the perception
of depth and texture in medical imaging applications.

Dynamic Light Direction [9]: The light direction vector L(t) is computed as:

L t =  
sin ωt + 0.2 η t
cos ωt − 0.2 η t

sin 0.5ωt
, (1)

where the noise factor η t  is defined as:
η t = sin ωt ∙ cos ωt , (2)

where ω is the light frequency, which is defined by the user input, and where t is the current time.
Dynamic Light Intensity: The light intensity I(t) is modeled as:

I t = I0 + A ∙ e − βt ∙ sin αt , (3)
where I0 is the base intensity, A is the amplitude of oscillation, β is the damping factor, and α is the angular frequency.

2.2. Plaque Density Analysis
To quantitatively assess the extent of plaque accumulation within peripheral arteries, a voxel-based plaque density

analysis was conducted [10]. This method uses the intensity values derived from Hounsfield units (HUs) in computed
tomography (CT) imaging to segment and classify vascular tissues, enabling a precise evaluation of plaque burden [11, 12].
The analysis hinges on defining specific HU thresholds to categorize voxels into calcified plaque, soft plaque, and vascular
tissue regions.

Thresholding: The classification of voxels is guided by predefined HU ranges as follows:
Vascular Tissue: 45 ≤ HU ≤ 300, (4)

Calcified Plaque: 130 ≤ HU ≤ 300, (5)
Soft Plaque: 50 ≤ HU < 130. (6)
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This thresholding mechanism ensures the accurate segregation of vascular elements, allowing for the extraction of
biomarkers associated with arterial health and disease.

Plaque density calculation: The plaque density (ρp) is computed as the ratio of plaque voxels (both calcified and soft)
to the total vascular voxels within the specified region of interest [13]. The formula for calculating plaque density is:

ρp = Nc +  Ns
Nv

, (7)

where Nc is the number of calcified plaque voxels, Ns is the number of soft plaque voxels, and Nv is the total number of
vascular tissue voxels.

This metric provides a quantitative measure of atherosclerotic plaque burden, offering critical insights into the severity
and progression of PAD. By combining HU-based segmentation with this density calculation, the framework supports
enhanced diagnostic precision and risk stratification.

2.3. Vascular Curvature Analysis
The analysis of vascular curvature is crucial for evaluating arterial deformation and identifying regions subjected to high

morphological stress, which are significant indicators of disease severity and progression [14]. By extracting a sequence of
centerline points Pi − 1, Pi, and Pi + 1 from the arterial geometry, the local curvature at each point is calculated [15]. This
approach provides a detailed quantification of the arterial structure, enabling the detection of irregularities and potential risk
zones.

The curvature ki at a specific centerline point Pi is determined by the angle between the vectors connecting consecutive
centerline points [16]. It is expressed mathematically as:

ki = arccos
v1⃗ ∙  v2⃗
v1⃗ v2⃗

, (8)

v1⃗ = Pi − Pi − 1, (9)
v2⃗ = Pi + 1 − Pi, (10)

where v1⃗ is a vector from the previous point to the current point, v2⃗ is a vector from the current point to the next point, and
v1⃗ , v2⃗  are the magnitudes of vectors v1⃗ and v2⃗, respectively.

Average Curvature Calculation [17]: To evaluate the overall curvature along the vascular centerline, the average
curvature k̅ is computed as the mean of all individual curvature values:

k̅ =
∑

i = 1

N − 1
ki

N − 2
, (11)

where N is the total number of centerline points.
This metric provides a comprehensive assessment of arterial shape irregularities, aiding in the identification of critical

morphological changes associated with vascular diseases. By integrating curvature analysis into the diagnostic process, this
method enhances the precision and reliability of disease characterization.

2.4. PAD Risk Classification
PAD risk classification integrates both plaque density and vascular curvature metrics [18], leveraging threshold-based

decision-making to stratify patients into high- or low-risk categories. This approach ensures a systematic and quantifiable
framework for early identification and intervention in patients susceptible to PAD.

The framework uses predefined thresholds: the plaque density threshold (ρp,threshold = 0.3) and the curvature threshold
(kthreshold̅ = 0.5). The classification rule is mathematically expressed as:

Risk Level =  High Risk, if ρp > ρp,threshold or k̅ >  kthreshold̅
Low Risk, otherwise.

, (12)
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where ρp represents the computed plaque density and k̅ denotes the average vascular curvature.
This methodology provides an efficient and robust tool for PAD risk assessment, enabling clinicians to prioritize patients

who may benefit from advanced diagnostic and therapeutic interventions. The threshold-based approach simplifies the
integration of the algorithm into real-time diagnostic systems, thereby enhancing clinical decision-making processes.

2.5. Implementation Details
The proposed framework was implemented using vtk.js [19] for advanced volume rendering and WebAssembly [20] to

ensure efficient computation and performance optimization. The integration of real-time dynamic illumination and automated
analysis modules into a web-based platform guarantees both accessibility and scalability for clinical and research
applications. The system processes CT imaging data in real time, enabling interactive exploration and detailed analysis of
vascular structures.

2.6. Dataset Description
The dataset used in this study, provided by the National and Kapodistrian University of Athens, comprises CT scans

from 22 patients diagnosed with PAD. Using a Revolution EVO CT scanner, the dataset features an average of 352 slices
per patient and an average file size of 182 MB. All patients provided written informed consent for the use of their anonymized
data in research. The data were anonymized and randomly selected from the hospital system for ethical compliance, with
research protocol approvals under protocol numbers 9876/28.3.24 and 11293/9.4.24.

3. Results

3.1. Effect of Light Controls on CT DICOM Peripheral Artery Imaging
Dynamic light controls play a pivotal role in enhancing the visualization of CT DICOM images, particularly for the

evaluation of PADs. Fig. 1 illustrates the impact of three critical parameters—light rotation speed, base intensity, and
intensity amplitude—on the imaging quality and clinical interpretability of vascular structures. These parameters enable
tailored visualization, facilitating the identification of arterial abnormalities and enhancing diagnostic accuracy. The user
interface, as shown in Fig. 1(a), provides precise control over the lighting parameters. The light rotation speed, initially set
to 0.001, governs the dynamic transitions of light over vascular surfaces, aiding in the identification of calcified plaques and
soft tissue variations. The base intensity, with a default value of 0.5, modulates the ambient brightness, ensuring balanced
contrast across the vascular and surrounding regions. The intensity amplitude, also set to 0.5 by default, introduces oscillatory
variations in lighting, enhancing depth perception and emphasizing surface textures. Fig. 1(b) presents the full 3D CT volume
of patient 9 under the default lighting parameters. This configuration achieves balanced illumination, enabling an overall
assessment of the vascular geometry.

Focused visualization of the pelvic region is shown in Fig. 1(c), (d), and (e) under dynamic lighting with the default
rotation speed (0.001), base intensity (0.5), and intensity amplitude (0.5). In Fig. 1(c), the rotational light highlights the
arterial walls and surrounding tissues, aiding in the identification of subtle vascular deformities. Fig. 1(d) and Fig. 1(e) further
enhance depth perception and contrast, improving differentiation between calcified plaques and soft tissues, which is
essential for precise plaque characterization and arterial health assessment. In Fig. 1(f), the light rotation speed is slightly
increased to 0.002, the base intensity is reduced to 0, and the intensity amplitude is set to 1. This setup enhances contrast
resolution and accentuates vascular surface gradients, thereby delineating arterial wall morphology with better precision. Fig.
1(g) shows the maximum light rotation speed (0.01) and intensity amplitude (1), with the base intensity maintained at 0.
Rapid light transitions accentuate surface textures and regions of high curvature, offering enhanced visualization of complex
vascular deformations. However, rapid oscillations may introduce artifacts, potentially complicating the evaluation of smaller
or less prominent features. Fig. 1(h) shows the effect of static lighting, which is achieved with a rotation speed of 0, a base
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intensity of 0.5, and an intensity amplitude of 0.5. Uniform and stable lighting  facilitates a detailed evaluation of the region
of interest, supporting the analysis of arterial wall integrity, plaque distribution, and vascular morphology without distractions
from dynamic transitions.

3.2. Validation of the Proposed Framework for PAD Risk Classification
The initial results of the proposed framework, as presented in Table 1, provide a detailed quantitative analysis of plaque

density and vascular curvature metrics for five patients diagnosed with PAD. These metrics represent preliminary validation
of the framework’s ability to assess vascular abnormalities and classify PAD risk effectively.

Fig. 1: Interactive Visualization of Peripheral Artery CT Imaging for Patient 9 with Dynamic Light Controls; (a) User interface for 
light control parameters; (b) Full CT volume visualization; (c-e) Region of interest under dynamic light variation; (f) Increased 

light rotation speed and maximum intensity amplitude; (g) Maximum light rotation speed and intensity amplitude; (h) Static 
lighting with medium intensity.

Table 1: Quantitative Results of Plaque Density and Vascular Curvature Metrics Across Patients.

Patient
ID

Total Vascular 
Voxels

Calcified 
Plaque Voxels

Soft Plaque
Voxels

Plaque 
Density

Total Centerline 
Points

Average 
Curvature

PAD Risk 
Classification

1 5534139 798390 3810908 0.8329 299684 1.132 High Risk
2 4853409 1178950 2975082 0.8559 218375 1.4366 High Risk
3 4551532 1155706 2952517 0.9026 234276 1.2712 High Risk
4 13067145 1463447 10616052 0.9244 234132 1.5417 High Risk
5 3499743 721625 2102619 0.807 255167 1.1786 High Risk
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The plaque density (ρp) values ranged from 0.807 for patient 5 to 0.924 for patient 4. Elevated plaque density values
indicate significant arterial plaque accumulation, reflecting advanced disease stages. For example, patient 4, with the highest
plaque density of 0.924, presented with severe arterial obstruction and pronounced disease progression. The analysis of
vascular curvature revealed average curvature values (k̅) ranging from 1.132 (patient 1) to 1.541 (patient 4). These values
are calculated from the total centerline points, with the highest count of 299,684 observed in patient 1. Higher curvature
values signify tortuous arterial paths, increasing hemodynamic stress and the risk of vascular complications. Patient 4, who
displays both the highest curvature (k̅ = 1.541) and plaque density (ρp = 0.924), is indicative of an advanced disease state
with substantial vascular irregularities.

All five patients were classified as being at high risk of PAD, according to the framework’s thresholds for plaque density
( > 0.3) and vascular curvature ( > 0.5). These results demonstrate the framework’s capacity to quantify critical vascular
features and classify PAD severity effectively in its initial application.

4. Discussion
The proposed framework, which is part of DECODE-3DViz [21], is an open source solution designed for efficient

WebGL-based high-fidelity visualization of large-scale medical images. It represents a significant advancement in the
automated risk classification of PAD by integrating optimized volume rendering, dynamic illumination, and quantitative
vascular analysis. The ability to automatically assess plaque density and vascular curvature provides clinicians with a
powerful tool for the early detection and risk stratification of PAD, which is critical for timely intervention and improved
patient outcomes. By offering a quantitative and objective assessment of vascular health, the proposed system enhances
diagnostic accuracy and supports personalized treatment strategies, ultimately reducing the morbidity and mortality
associated with PAD.

The proposed framework outperforms existing tools such as VolView [22] and Glance [23], which lack automated
clinical decision-making capabilities. As summarized in Table 2, while VolView and Glance provide robust visualization
and basic analysis features, they do not support automated plaque density calculation, vascular curvature analysis, or risk
classification. In contrast, the proposed system integrates these advanced functionalities, enabling a comprehensive and
automated evaluation of PAD severity. This automation reduces the reliance on manual interpretation, minimizes
interobserver variability, and enhances the efficiency of diagnostic workflows. Furthermore, the dynamic illumination model
in the proposed framework offers superior visualization of vascular structures, improving the identification of subtle
abnormalities that are missed with traditional tools. Despite its advancements, the proposed framework has certain

Table 2: Comparative Feature Analysis of the Proposed PAD Framework Versus Existing Tools (VolView and 
Glance).

Feature / Capability Proposed Framework VolView [22] Glance [23]
Volume Rendering ✓ ✓ ✓

Dynamic Illumination ✓ ✗ ✗

Real-Time Light Control ✓ ✗ ✗
Automated Plaque Density 
Analysis

✓ ✗ ✗

Automated Vascular Curvature 
Analysis

✓ ✗ ✗

PAD Risk Stratification ✓ ✗ ✗

Clinical Decision Support ✓ ✗ ✗

Large-Scale Visualization ✓ ✗ ✗
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limitations. First, the accuracy of plaque density and curvature analysis depends on the quality of the input CT data, which
may be affected by imaging artifacts or low resolution. Second, the framework currently relies on predefined thresholds for
risk classification, which may not account for patient-specific variations in vascular anatomy and disease progression.

Future work will focus on addressing these limitations and further enhancing the framework’s capabilities. AI-based
segmentation techniques will be integrated to improve the accuracy of peripheral artery and centerline extraction, enabling
more precise quantification of plaque burden and vascular geometry. In addition, a comprehensive clinical validation of the
proposed framework through two cohort-based studies. First, a retrospective study on previously collected datasets with
known disease progression will be conducted to evaluate the accuracy of the risk stratification in identifying patients who
required treatment for severe PAD. Second, a prospective cohort study will be initiated to follow newly diagnosed patients
over a period of five years, assessing the predictive capability of the framework in real-world clinical scenarios. These steps
aim to establish robust clinical evidence supporting the diagnostic and prognostic utility of the system. Finally, the framework
will be optimized for cloud-based deployment, enabling scalable and accessible usage in healthcare.

5. Conclusion
The proposed computational framework integrates optimized volume rendering, dynamic illumination, and quantitative

vascular analysis to redefine PAD diagnostics. By automating the assessment of plaque density and vascular curvature, the
system enhances diagnostic precision, reduces interobserver variability, and streamlines clinical workflows. Initial validation
demonstrated its ability to classify PAD risk effectively, offering a robust, noninvasive solution for early intervention and
personalized patient management. The study utilized real clinical data for validation, confirming the practical applicability
of the framework. Future work will focus on expanding the dataset, incorporating multimodal imaging, and integrating AI-
based segmentation techniques to enhance clinical accuracy and support personalized vascular assessments.
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