
Proceedings of the 11th World Congress on Electrical Engineering and Computer Systems and Sciences (EECSS'25) 

Paris, France – August, 2025  

Paper No. ICBES 206  

DOI: 10.11159/icbes25.206 

ICBES 206-1 

 

 

Explainable Heart Failure Voice Prediction using Machine Learning 
Ensembles 

 

Muniba Ashfaq1, Petar Vračar1, Borut Flis1, Matej Pičulin1, Amy Fuller2, Nduka Okwose2, Nenad 

Filipović3, Djordje Jakovljević2, Zoran Bosnić1 
1University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, 1000 Ljubljana, Slovenia 

muniba.ashfaq@fri.uni-lj.si; petar.vracar@fri.uni-lj.si; borut.flis@fri.uni-lj.si; matej.piculin@fri.uni-lj.si; 

zoran.bosnic@fri.uni-lj.si 
2Clinical Sciences and Translational Medicine, RC for Health and Life Sciences, Coventry University, UK 

ae2713@coventry.ac.uk; ad6707@coventry.ac.uk; ad5287@coventry.ac.uk 
3Bioengineering Research and Development Center, BioIRC, Kragujevac, Serbia 

fica@kg.ac.rs 

 

 
Abstract - Heart failure (HF) detection is one of the challenging health concerns as early diagnosis may reduce mortality rate and 

improve the quality of life. In this aspect, we propose a novel biomedical voice signal processing framework including multiple voice 

tasks. The extracted features from multiple voice tasks are used to classify the HF detection using an ensemble of explainable AI (XAI) 

integrated machine learning classifiers. A key innovation of our methodology is the implementation of a two-stage majority voting 

strategy to consolidate the predictions of the diverse classifiers across heterogeneous voice tasks. In the first stage, each voice task is 

independently processed, and predictions from all classifiers are aggregated using standard majority voting; in the second stage, these 

task-level decisions are integrated via an additional majority voting layer to produce the final HF prediction. This hierarchical voting 

mechanism is motivated by the need to mitigate bias from any single classifier or voice task, thus enhancing predictive robustness and 

ensuring that the final decision reflects a consensus derived from multi-task auditory inputs. 
 

Keywords: Voice signal processing, heart failure prediction using machine learning, heart failure recognition using voice 

signals, machine learning ensembles, classification, majority voting, SHAP, voice tasks.  

 

 

1. Introduction 
In recent years, advances in biomedical signal processing, along with machine learning (ML) techniques, have been 

used to extract acoustic features from voice recordings for heart disease detection [1]. The extracted features from the voice 

signals are highly correlated with heart failure detection and prognosis [2, 3]. Heart failure is a complex clinical syndrome 

that affects millions worldwide, leading to considerable morbidity and mortality. The conventional diagnostic methods are 

often invasive, expensive, and challenging for remote monitoring. The diagnostics may include chest imaging, biomarker 

assays such as B-type natriuretic peptide (BNP) [4] and N-terminal pro b-type natriuretic peptide (NT-proBNP) [5], and 

physical examinations. Hence, there is a substantial clinical need for non-invasive, cost-effective, and easily accessible 

methods for heart failure detection. Recent research has focused on employing voice and speech analysis as potential digital 

biomarkers in HF owing to their non-invasive nature, ease of collection via smartphones, and the possibility of continuous 

monitoring [6]. Heart failure leads to physiological changes that affect not only the cardiovascular system but also the 

respiratory and laryngeal systems. Fluid overload, pulmonary congestion, and altered autonomic regulation in HF patients 

can cause changes in vocal fold function, phonation stability, and speech patterns. These voice related changes are 

quantifiable using extraction of acoustic and prosodic features from the recordings. The changes in fundamental frequency 

(F0), cepstral peak prominence (CPP), jitter, shimmer, and maximum phonation time (MPT) have been used to recognize 

HF status [7]. 

To convert the high-dimensional information in the form of extracted features of voice signals into actionable clinical 

insights, a robust machine learning framework is essential [8]. Ensemble learning, which combines the predictions of multiple 

classifiers on the set of the voice signal task to yield a more accurate and stable outcome than any individual model. It is 

useful in diverse medical diagnostic applications to reduce the potential model-based biases and overfitting problems [9]. An 
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ensemble approach for heart failure prediction that utilizes the strengths of various classifiers such as Support Vector 

Machine (SVM), Decision Tree, Random Forest, Logistic Regression, and Gradient Boosting has been proposed [10]. 

Moreover, the integration of explainable AI (XAI) methods like SHAP (SHapley Additive exPlanations) identifies the 

importance scores to features, which are based on their contribution in predicting model output [11–13]. SHAP-based 

feature selection and training models with reduced features, thus effectively used to improve interpretability and 

dimensionality reduction. 

 In this work, we propose a hybrid two-stage ensemble framework for heart failure prediction using voice signal data. 

The key contributions of our work are: 

 We design a SHAP-guided feature selection mechanism integrated into the hybrid ML ensembles for model 

transparency and identify the most impactful acoustic features. 

 We used novel voice tasks combination set to analyse and predict heart failure on limited dataset 

 We implement a nested leave-one-out cross-validation (LOOCV) strategy to evaluate the generalization. 

 We introduce a two-stage majority voting mechanism, where individual classifiers’ predictions for each task are used 

for task-based heart failure prediction via majority voting (Stage-1), and the final prediction of heart failure is 

concluded by voting across all the task-level predictions via majority voting (Stage-2). 

 

This hierarchy majority voting scheme along with SHAP based machine learning classification is more consistent 

and reduces false predictions from weak classifiers for each task separately. 

 

2. Methodology 
 In this research, real clinical data is collected from the heart failure patients in the form of biomedical voice signals. 

The voice signals of heart failure patients are associated with 5 different tasks. The patients’ voices are collected from 

multiple clinical centers across Europe. The dataset contains 4 confirmed heart failure patients and 4 suspected. Each patient 

with 5 tasks makes a dataset with a total of 20 voice records for confirmed and 20 for suspected heart failure. Each feature 

set contains 94 features, hence the cumulative feature set for both individual classes is of dimension 20x94. The dimension 

of the feature set, including both classes, is 40x94. The voice recorder, along with the application for feature extraction, is 

the same across the medical centers. The research is based on the novel voice signals tasks combination for the analysis of 

heart failure patients’ voices and the prediction of disease. The details of the tasks are as follows. 

 Task 1 is reading a specific paragraph, task 2 is at least 30 second free speech, task 3 is counting number 1 to 30 as 

fast and accurate as possible, task 4 is counting numbers from 30 to 1 as fast and accurate as possible, and the task 5 is the 

phonation “aaa” as long as possible three times with breath in and out between the sounds. All 5 voice tasks are recorded in 

the local disk drive for further biomedical voice signal processing. Each medical center is given an exe file (application) that 

takes all 5 voice tasks one by one and extracts the features from each task separately. The extracted features are again stored 

in the local disk drive in the form of CSV files. The extracted features are further passed through different machine learning 

classifiers for prediction. 

 The features considered for the heart failure prediction are 94 in total. The diverse range of features considered for 

extraction includes total time of phonation, first and last phonation, number of pauses greater than 100ms and 500ms, longest 

pause, longest continuous phonation, standard deviation of the pause and phonation length, total number of phonation 

segments, mean and standard deviation of the pitch, loudness, F0, [1-13] MFCCs (Mel-frequency cepstral coefficients), jitter, 

shimmer, CPP (Cepstral Peak Prominence). Moreover, mean and standard versions of [1-13] (5-95) MFCCs, 5-95 pitch, 5-

95 jitter, and shimmer. 

Let 𝑚 be the number of voice signal tasks 𝑇𝑖 = [𝑇1, 𝑇2, … , 𝑇𝑚], with associated feature vector for each task as 𝐹(𝑇𝑖) ∈ ℝ𝑑, 

where 𝑖 = 1, 2, … , 𝑚. Let 𝑁 be the number of candidate machine learning classifiers 𝐶𝑗, where 𝑗 = 1, 2, … , 𝑁, e.g., Random 

Forest, Gradient Boosting, SVM, Logistic Regression, and Decision Trees.  

To deeply understand the importance of the features using explainable AI (XAI), the SHAP (SHapley Additive exPlanations) 

explainer is used. The SHAP values are used to explain and quantify the relevant important features in all tasks using each 

classifier for heart failure prediction. The threshold value is used to retain the most important features above it. The increasing 



 

 

 

 

 

ICBES 206-3 

 

threshold value reduces the selected feature vector length with increasing relevant importance. The appropriate threshold 

value is important in terms of reducing feature vector length and increased performance.    

Let 𝑆𝑖𝑗 ∈ ℝ𝑑 represent SHAP values for task 𝑇𝑖 and classifier 𝐶𝑗. We define a binary mask 𝑀𝑖𝑗 ∈ ℝ{0,1}𝑑, where 

𝑀𝑖𝑗(𝑘) = {
1, 𝑖𝑓 𝑆𝑖𝑗(𝑘) ≥ 𝜃 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
where 𝜃 is the threshold for SHAP importance. The reduced feature vector hence becomes 

�̃�𝑖𝑗(𝑇𝑖) = 𝑀𝑖𝑗⨀𝐹(𝑇𝑖). The performance of the classifier for each task is computed with reduced feature set to form an 

integrated XAI based Hybrid ML ensemble for heart failure prediction using biomedical voice signals. Furthermore, the 

mathematical representation at each step of the process is explained as follows: 

 
2.1. Feature Representation 

Each classifier has an input of stacked features vectors as shown in Eq. (1)  

F= [

𝐹(𝑇1)

𝐹(𝑇2)
⋮

𝐹(𝑇𝑚)

] ∈ ℝ𝑚×𝑑 

(1) 

where F represents complete feature matrix containing feature vector 𝐹(𝑇𝑖) ∈ ℝ𝑑 associated with task 𝑇𝑖, for 𝑖 = 1, 2, … , 𝑚.  

 
2.2. Classifier Prediction 

Each classifier produces the predictions for all tasks as shown in Eq. (2) 

 

𝑃𝑗(𝑇𝑖) = 𝐶𝑗(𝐹(𝑇𝑖)),                         ∀𝑗 = 1, 2, … , 𝑁, ∀𝑖 = 1, 2, … , 𝑚 (2) 

where 𝐶𝑗 is the 𝑗-th classifier in the ensemble, for 𝑗 = 1, 2, … , 𝑁. 𝑃𝑗(𝑇𝑖) is the predicted label for 𝑇𝑖 using classifier 𝐶𝑗. The 

predictions for each task from all classifiers is represented as a vector in Eq. (3) 

 

P(𝑇𝑖) = [𝑃1(𝑇𝑖), 𝑃2(𝑇𝑖), … , 𝑃𝑁(𝑇𝑖)]𝑇 (3) 

where P(𝑇𝑖) is the vector of predictions from all the classifiers for task 𝑇𝑖, as defined in Eq. (2)  

 
2.3. Stage 1: Task-Wise Majority Voting 

The predictions from all the classifiers for each task undergo majority voting as shown in Eq. (4) 

 

𝑃′(𝑇𝑖) = 𝑚𝑜𝑑𝑒({𝑃1(𝑇𝑖), 𝑃2(𝑇𝑖), … , 𝑃𝑁(𝑇𝑖)}) (4) 

where 𝑃′(𝑇𝑖) is the final label for task 𝑇𝑖 after majority voting across all classifiers. The cumulative task-wise prediction 

vector as a result of majority voting applied on each task is shown in Eq. (5) 

 

P′ = [

𝑃(𝑇1)

𝑃(𝑇2)
⋮

𝑃(𝑇𝑚)

] ∈ ℝ𝑚×1 

 

(5) 

where P′ is the vector of ensemble predictions of all the individual tasks after stage-1 majority voting.   
2.4. Stage 2: Final Majority Voting Across Tasks 

The predictions of all the tasks acquired after stage 1 majority voting undergoes another round. This is the final stage of 

prediction as stage 2 majority voting across all tasks for final prediction as shown in Eq. (6) 

 

𝑃𝑓𝑖𝑛𝑎𝑙 = 𝑚𝑜𝑑𝑒(P′) (6) 

where 𝑃𝑓𝑖𝑛𝑎𝑙 is the final prediction after stage-2 majority voting across all the tasks. 

Fig.  1  shows the workflow of the non-invasive heart failure prediction using ensemble of machine learning classifiers. 

The patient undergoes 𝑚 different voice recordings denoted as 𝑇1, 𝑇2, … , 𝑇𝑚 for task 1, task 2, … task 𝑚 respectively. The 
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feature set represented as 𝐹(𝑇1), 𝐹(𝑇2), … , 𝐹(𝑇𝑚) are extracted from 𝑇1, 𝑇2, … , 𝑇𝑚 respectively. The feature set of all 

tasks are provided as input to each machine learning classifiers. In our experiments we used 5 different machine learning 

classifiers including Random Forest, Gradient Boosting, SVM, Decision Trees, and Logistic Regression. The predictions 

𝑃𝑗(𝑇𝑖=1,2,…,𝑚) for all the tasks are performed using each classifier. Stage 1 majority voting is applied on the predictions 

the classifiers for each task. The final prediction is computed based on the stage 2 majority voting applied on the 

of all tasks.  

 

 

 
Fig.  1: Voice signal processing for multiple tasks and heart failure prediction using hybrid machine learning ensembles 

 

The best parameters for each classifier for all tasks are found separately using Leave One Out (LOO) cross-

validation. The hyperparameters include the model parameters and also reduced feature sets based on different 

thresholding of important features. The feature importance is explained using SHAP (SHapley Additive exPlanations) 

values, where thresholding is applied to select the top important features for prediction using each task-based classifier. 

The increasing thresholding reduces the feature vector set for all tasks, along with the selection of the most important 

corresponding features. The algorithm for multi-task explainable AI (XAI) integrated hybrid ML ensembles is described 

in Algorithm 1. The algorithm is based on the nested leave-one-out approach for heart failure prediction using multiple 

tasks. The outer leave-one-out loop splits the dataset into train and test data, while the inner leave-one-out loop splits 

the data further into train and validation to perform hyperparameter tuning using leave-one-out cross validation. In the 

first step of hyperparameter tuning, the model with the best parameters is found. Afterward, SHAP values are computed 

and a threshold is applied to filter out the most important features. Hence, it reduces the length of the feature vector and 

produces good performance. Based on the best average threshold accuracies, the best threshold is selected along with 

the already selected parameters using Grid Search CV for better performance. If the performance of the model, along 

with a threshold applied on SHAP values, is not better than without feature reduction, then the final test predictions are 

made without feature reduction. This process repeats for each task and all classifiers are applied one by one, computing 
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1st stage majority voting on all classifiers. After 1st stage majority voting, all the task-based predictions undergo another final 

2nd stage majority voting. Final predictions are made after this final stage of majority voting is applied across all tasks. 

 

ALGORITHM 1: MULTI-TASKS XAI INTEGRATED HYBRID ML ENSEMBLES  

 Input: Dataset 𝐷 = {(𝐹(𝑇𝑖), 𝑦𝑖)}𝑖=1
𝑚 , where 𝐹(𝑇𝑖) is feature set for task 𝑇𝑖  and label 𝑦𝑖 , classifier pool 𝐶 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑁 }, 

SHAP thresholds 𝛩 = {𝜃1, 𝜃2, … , 𝜃𝑘}, parameter grid for each classifier 

 Output: Final prediction class label 𝑃𝑓𝑖𝑛𝑎𝑙  

1 for each task 𝑇𝑖  𝑖𝑛 [𝑇1, 𝑇2, … , 𝑇𝑚] 

2  for each classifier 𝐶𝑗  𝑖𝑛 [𝐶1, 𝐶2, … , 𝐶𝑁] 

3   for split data 𝐷 as 𝐷𝑡𝑟𝑎𝑖𝑛+𝑣𝑎𝑙 and 𝐷𝑡𝑒𝑠𝑡  using Leave-One-Out data split approach 

4    Apply Leave-One-Out Grid Search CV with parameter grid, then train the model with best parameters 

5    for each threshold 𝜃 in 𝛩 

6     for split data 𝐷𝑡𝑟𝑎𝑖𝑛+𝑣𝑎𝑙 as 𝐷𝑡𝑟𝑎𝑖𝑛  and 𝐷𝑣𝑎𝑙  using Leave-One-Out data split approach 

7      Compute SHAP values and apply threshold 𝜃 to extract important feature set 

8      Record each accuracy 𝐴𝑐𝑐𝑡ℎ𝑟𝑒𝑠ℎ  after feature reduction 

9     end for 

10     if 𝑚𝑒𝑎𝑛(𝐴𝑐𝑐𝑡ℎ𝑟𝑒𝑠ℎ)>𝐴𝑐𝑐𝑏𝑒𝑠𝑡, then 𝐴𝑐𝑐𝑏𝑒𝑠𝑡 ← 𝑚𝑒𝑎𝑛(𝐴𝑐𝑐𝑡ℎ𝑟𝑒𝑠ℎ) 𝑎𝑛𝑑 𝜃𝑏𝑒𝑠𝑡 ← 𝜃 end if 

11    end for 

12    Train the model with best parameters, SHAP values with 𝜃𝑏𝑒𝑠𝑡 and record each test accuracy 𝐴𝑐𝑐𝑡𝑒𝑠𝑡  

13   end for 

14   Record 𝑃𝑗(𝑇𝑖) and the final accuracy 𝐴𝑐𝑐𝑓𝑖𝑛𝑎𝑙 ← mean(𝐴𝑐𝑐𝑡𝑒𝑠𝑡)   

15  end for 

16  Compute the final prediction 𝑃′(𝑇𝑖) for task 𝑇𝑖  using Stage 1 Majority Voting as mode(𝑃𝑗(𝑇𝑖)) 

17 end for 

18 Compute the final prediction 𝑃𝑓𝑖𝑛𝑎𝑙  as Stage 2 Majority Voting across all tasks as mode(𝑃′(𝑇𝑖)) 

 
3. Results 

The performance of the two-stage majority voting is evaluated as the final prediction of the biomedical voice signal as 

to whether it indicates heart failure or not. The leave-one-out cross-validation is used along with SHAP values computation. 

The final performance is evaluated using leave-one-out approach using the best model (parameters and threshold for SHAP 

feature reduction) resulting in nested leave-one-out as a complete strategy for heart failure prediction. In the first step, each 

task undergoes a performance evaluation applying all classifiers. In the second step, 1st stage of majority voting is applied 

on the predictions of all classifiers at the task level. This results in significantly improving the performance as compared to 

individual classifiers. The final step, the 2nd stage of majority voting, is performed across the predictions at the task level in 

heart failure prediction. The complete two-stage majority voting strategy with multiple tasks shows the higher performance 

of the prediction system as compared to individual classifiers in majority of the tasks. Table 1 shows the performance analysis 

of all the prediction steps of multi-task XAI integrated Hybrid ML Ensembles. The performance of the average of all the 

classifiers at the task level shows the diversity of individual classification responses to each task. The greater average 

performance of task 1 shows the capability of most of the classifiers to well predict at this level. The higher average 

performance of task 1 leads to higher stage 1 performance of task 1 using majority voting. The performance is less than 50% 

for task 5, hence the worst performance at stage 1 majority voting. Each classifier’s performance is different for each task. 

The classifiers performing better in one task might not perform better in other tasks. Hence, creating ambiguity in recognizing 

one classifier as best for all tasks. Our approach, as shown in Table 1, the final prediction at the end of stage 2, majority 

voting across all tasks, is beneficial to cope with a variety of tasks for heart failure prediction using voice signals.  
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Table 1: Performance analysis of all the prediction steps of Multi-Tasks XAI integrated Hybrid ML Ensembles 

 

Prediction Steps Accuracy Precision Sensitivity Specificity F1-Score 

Average All Classifiers’ Performance (Task 1) 0.70 0.65 0.70 0.70 0.67 

Average All Classifiers’ Performance (Task 2) 0.63 0.64 0.65 0.60 0.64 

Average All Classifiers’ Performance (Task 3) 0.63 0.67 0.55 0.70 0.59 

Average All Classifiers’ Performance (Task 4) 0.58 0.53 0.60 0.55 0.56 

Average All Classifiers’ Performance (Task 5) 0.28 0.27 0.35 0.20 0.30 

Stage 1: Majority Voting (Task 1) 1.00 1.00 1.00 1.00 1.00 

Stage 1: Majority Voting (Task 2) 0.75 0.75 0.75 0.75 0.75 

Stage 1: Majority Voting (Task 3) 0.63 0.66 0.50 0.75 0.57 

Stage 1: Majority Voting (Task 4) 0.50 0.50 0.50 0.50 0.50 

Stage 1: Majority Voting (Task 5) 0.25 0.25 0.25 0.25 0.25 

Stage 2: Majority Voting (All Tasks) 0.88 1.00 0.75 1.00 0.86 

 

Fig 2. shows the mean SHAP values across all the training samples for task 1. It shows the feature importance in 

both classes with task 1 as a sample example using a SVM classifier. The SHAP values are further averaged across all 

the leave-one-out iterations. The top 15 features contribution for heart prediction is shown in Fig 2. The top feature 

contributing positively towards the prediction of heart failure in task 1 is the standard deviation of the length of all the 

phonation. The other features with decreasing positive contribution are mean of (5-95) percentile of 13 MFCC, (5-95) 

percentile of jitter, (5-95) percentile of 9 MFCC, standard deviation of (5-95) percentile of 13 MFCC, standard deviation 

of 13 MFCC, and mean of loudness. 

 

 
Fig.  2: Mean SHAP values for voice task 1 and SVM classifier in heart failure prediction 
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4. Conclusion 
The biomedical voice signal processing for heart failure prediction represents a significant step in non-invasive cardiac 

diagnostics. We combined multi-task voice acquisition, feature extraction, ensemble machine learning, and a two-stage 

majority voting strategy to achieve high predictive accuracy and clinical reliability. The two-stage majority voting aggregates 

diverse classifier outputs to achieve consensus, consequently serving to dilute the impact of potential outliers or 

misclassifications that may occur when analysing any single voice task in isolation.  Future work will focus on exploring 

additional features and investigating further enhancements of the ensemble strategy for heart failure detection.  
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