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Abstract - Invasive plant species represent one of the most significant threats to biodiversity and ecological health worldwide,
contributing to over 33% of documented animal extinctions and costing the North American economy more than $26 billion annually. In
regions like San Diego, California, United States, where high biodiversity and wildfire susceptibility amplify these effects, timely and
accurate identification of invasive species is essential for effective removal. However, manual identification requires expert knowledge,
limiting large-scale volunteer efforts. This paper aims to develop novel artificial-intelligence-based solutions for invasive plant
identification using computer vision. A custom convolutional neural network (CNN) was developed and trained to classify eleven high-
priority invasive plant species in San Diego. Transfer learning models based on MobileNetV2 and ResNet50V2 were implemented and
evaluated to compare performance, scalability, and suitability for field deployment. All models achieved high top-N accuracies, with the
custom CNN and ResNet50V2 and MobileNetV2 transfer models reaching top-5 accuracies of over 94%. These results demonstrate the
value of top-N accuracy in real-world ecological contexts, where presenting multiple likely classifications can effectively guide user
decisions. This paper highlights the potential of Al-driven tools to reduce barriers to environmental action by democratizing species
identification and enabling more consistent monitoring. By combining locally-collected ecological data with lightweight, field-
deployable deep learning architectures, these novel models can support real-time, community-powered species identification. This
approach contributes to a scalable and cost-effective framework to support biodiversity conservation and sustainable ecosystem
management through accessible machine learning applications.
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1. Introduction

Environmental protection has become a rising topic in modern science, technology, and social debates, but there are still
many areas that have been left virtually untouched, such as the battle against invasive plants. Invasive species are currently
the biggest threat to global biodiversity, second only to habitat loss. They are a factor in over 33% of animal extinctions and
over 25% of plant extinctions [1]. Especially in dry areas like much of California, invasive plants accelerate erosion, create
abnormal buildup on forest floors, and serve as fuel for more frequent and intense wildfires [2]. They also greatly harm the
global economy, affecting property values, agricultural productivity, public utility operations, native fisheries, tourism, and
outdoor recreation. Invasive plants and animals cost North America $2 billion per year in the early 1960s to over $26 billion
per year since 2010, with their global economic cost estimated to be $1.288 trillion over the past 50 years [3]. However, a
substantial workforce is required to reduce or eradicate dangerous invasive plant species, and to ensure that they do not
reinvade a region, long-term and consistent check-ins on the affected area are necessary. This type of removal requires a high
level of knowledge of all the plant species in the area, presenting a large time and effort barrier for volunteers and
disincentivizing individual removal. Through breaking down this knowledge barrier, more proactive and widespread
management could substantially reduce future costs at the trillion-dollar scale [4].

Thus, this paper presents a novel approach that leverages artificial intelligence (Al) to address the ecological and
economic challenges posed by invasive plants. Artificial intelligence, particularly in the form of computer vision, has shown
immense potential in environmental protection, from identifying endangered species, tracking deforestation, or monitoring
ocean water quality [5]. By automating complex identification tasks, Al can bridge the gap between citizen scientists and the
specialized knowledge typically required for effective conservation work. In this paper, we develop and implement a
convolutional neural network (CNN) to recognize the most invasive plant species in San Diego County, California, United
States, an area particularly vulnerable due to its high biodiversity and risk of wildfires. Furthermore, the custom CNN was
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compared to several leading transfer learning models, including MobileNetV2 and ResNet50V2 to evaluate the tradeoffs in
accuracy and generalizability. Through this comparative analysis, we highlight the strengths of different machine learning
models in achieving high performance in invasive plant identification as viable tools for integration into mobile applications
for citizen scientists and local land management efforts.

2. Methodology

2.1. Data Collection

Government databases, including the San Diego County Invasive Weed Watch and the California Department of Food
and Agriculture’s Encycloweedia, were utilized to identify priority species in San Diego County for identification, focusing
on legally mandated A-rated plants, defined as “a pest of known economic or environmental detriment and is not known to
be established in California. A-rated pests are prohibited from entering the state... If found entering or established in the
state, A-rated pests are subject to state (or commissioner when acting as a state agent) enforced action involving eradication,
quarantine regulation, containment, rejection, or other holding action” [6]. As such, a list of eleven high-priority invasive
plant species was determined:
Aegilops triuncialis
Arundo donax
Centaurea calcitrapa
Centaurea stoebe
Cortaderia selloana
Cynara cardunculus
Euphorbia terracina
Hypericum canariense
Lepidium latifolium

10. Lythrum salicaria

11. Volutaria tubuliflora

Image data were manually downloaded from the online Calflora and the Bugwood Image Databases, ensuring variation
in lighting, focus, plant parts, and growth stages, with about 150 images per plant in the final dataset.
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F1g 1: Example of collected dataset for Volutarza tubultﬂora (1mported to Google Drlve)
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2.2. Convolutional Neural Network

Convolutional neural networks (CNNs) are a class of deep learning models particularly effective for image classification
tasks due to their ability to automatically learn spatial hierarchies of features through convolutional layers. For this study, a
custom CNN architecture was implemented using the Keras deep learning framework to classify the 11 high-priority invasive
plant species determined above. The model was built using a sequential approach and consisted of six convolutional layers,
each followed by ReLU activations, synchronized batch normalization, and max pooling layers to progressively reduce
spatial dimensions. Dropout layers were interspersed to mitigate overfitting by randomly deactivating neurons during
training. The extracted feature maps were flattened into a one-dimensional vector and passed through a dense layer of 512
neurons before producing final predictions through a softmax-activated dense layer of 11 outputs, corresponding to the target
plant species. L1 regularization was applied to the dense layers to further prevent overfitting. The model was compiled with
the RMSprop optimizer, using categorical cross-entropy as the loss function and accuracy as the evaluation metric.

Extracting Features Classification

Output
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Input image@

Convolution Pooling Fully
connected

Fig. 2: Flowchart of our CNN architecture

2.3. Transfer Learning Models

Two additional transfer learning approaches were implemented using pre-trained convolutional neural networks. The
first model employed ResNet50V2, leveraging its deep residual architecture to extract high-level visual features from input
images resized to 224x224 [7]. The pretrained ResNet50V2 base was frozen to preserve ImageNet-learned weights and
followed by a Flatten layer and a dense softmax classifier tailored to the invasive plant categories. The model was compiled
using categorical cross entropy loss and the Adam optimizer, and training performance was tracked using accuracy metrics
and checkpoint callbacks. A second model incorporated MobileNetV2, a lightweight and efficient architecture ideal for
deployment on resource-constrained devices [8]. Input images were resized to 300x300 and normalized to a [0,1] scale. The
MobileNetV2 base was frozen and followed by a global average pooling layer, a dense ReLU-activated layer with L2
regularization, batch normalization, dropout, and a final softmax output layer. This model was trained with a learning rate
scheduler and checkpointing based on validation accuracy. Both transfer learning models demonstrated effective feature
reuse from large-scale datasets, significantly reducing training time while maintaining classification performance on this
specific set of plant species.
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Fig. 3: Flowchart of our transfer model architecture
3. Results & Discussion
3.1. Convolutional Neural Network

The best-performing CNN’s performance across epochs was visualized by plotting accuracy for the training and
validation datasets.
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Fig. 4: Accuracy plot of best-performing CNN

To evaluate CNN performance beyond standard accuracy metrics, top-N accuracy and confusion matrix analyses were
conducted. Top-N accuracy assessed the model’s ability to include the correct class within its top N predicted probabilities,
offering a more useful metric for multi-class classification. This accuracy metric is valuable in real-world applications of
these models as it reflects scenarios where presenting multiple likely predictions of harmful invasive plants for removal can
still guide effective decision-making even if the top prediction is incorrect.

MVML 137-4



Table 1: Top 1/2/3/4/5 accuracy of best-performing CNN

Top 1 Top 2 Top 3 Top 4 Top 5
Accuracy Accuracy Accuracy Accuracy Accuracy
0.6605 0.7971 0.8634 0.9275 0.9440

Additionally, confusion matrices were generated for the best-performing CNN iteration. Confusion matrices provide a
detailed breakdown of a classification model’s performance by showing not only overall accuracy but also how individual
classes are predicted, helping to identify specific types of errors, such as which plant classes are commonly confused with
others, enabling targeted improvements. In real-world applications, especially with multiple categories like invasive plant
species, this detailed insight is crucial for understanding model strengths and weaknesses beyond simple accuracy metrics.
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Fig. 5: Confusion matrix of best-performing CNN
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The highest-performing CNN reached a top-5 accuracy of 94.40% (Table 1) and generally predicted labels correctly as
seen in the diagonal in the confusion matrix (Fig. 5).

3.2. Transfer Learning Models

To assess the effectiveness of transfer learning approaches, two pre-trained convolutional neural networks, ResNet50V2
and MobileNetV2, were fine-tuned on the collected San Diegan invasive plant species dataset. The ResNet50V2 model was
evaluated using standard accuracy and loss, in addition to the top-N accuracy metric specified in Section 3.1.
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Table 2: Top 1/2/3/4/5 accuracy of ResNet50V2 Model

Top 1 Top 2 Top 3 Top 4 Top 5
Accuracy Accuracy Accuracy Accuracy Accuracy
0.631 0.7876 0.8743 0.9097 0.9451

The ResNet50V2 model demonstrated top-N accuracies useful for field removal. MobileNetV2 outperformed both
ResNet50V2 and the custom CNN in terms of top-1 classification precision on the test dataset. MobileNetV2's lighter
architecture makes it an effective choice for deployment in field or mobile environments where computational resources may
be limited. It demonstrated a similarly useful top-5 accuracy to the other models.

Table 3: Top 1/2/3/4/5 accuracy of MobileNetV2 Model

Top 1 Top 2 Top 3 Top 4 Top 5
Accuracy Accuracy Accuracy Accuracy Accuracy
0.69381 0.8301 0.8850 0.9257 0.9416

All models evaluated, including ResNet50V2, MobileNetV2, and the custom CNN, demonstrated strong top-5 accuracy,
demonstrating their utility in real-world invasive species identification and removal efforts. MobileNetV2 may be the most
effective model overall due to its balance of precision and lightweight architecture suited for mobile deployment; however,
both ResNet50V2 and the custom CNN still showed competitive performances. These results suggest that top-N accuracy is
a valuable metric for ecological field applications, where suggesting multiple likely classifications is useful when deciding
whether or not to remove a certain plant, especially when the baseline user in this application does not have experience
recognizing invasive plant species.

4. Conclusion

Invasive plant species pose a critical threat to global biodiversity and ecosystems, contributing to over a third of
documented extinctions and causing extensive environmental degradation, especially in vulnerable regions like California.
Beyond ecological damage, they impose staggering economic costs, highlighting the urgent need for scalable, intelligent
solutions to aid in their detection and removal. This study presents an Al-driven approach to support ecological conservation
through the automated identification of invasive plant species in San Diego County. By developing a custom CNN and
evaluating it alongside two advanced transfer learning models, ResNetS0V2 and MobileNetV2, we demonstrated the
feasibility and effectiveness of computer vision in real-world environmental applications. All models achieved strong top-5
accuracies of about 94%, indicating their robustness in guiding effective decision-making for removal in the field, even when
the top prediction is incorrect. Among the models, MobileNetV2 stood out as the most suitable for field deployment,
achieving the highest top-1 accuracy while maintaining a lightweight architecture compatible with mobile and low-resource
settings, but the custom CNN and ResNet50V2 also performed competitively.

This paper demonstrates the potential of Al-powered tools to democratize access to specialized environmental
knowledge, lower the barrier for individual action, and support more proactive and cost-effective invasive species
management. By integrating these models into mobile applications for citizen scientists, conservation volunteers, or land
management agencies, this technology can enable more widespread and consistent monitoring, reducing long-term ecological
and economic damage. Future work may focus on expanding species coverage, improving generalization across regions, and
integrating real-time geolocation and feedback systems to create a comprehensive, intelligent framework for invasive plant
detection and removal.
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