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Abstract- Multiphase flow measurement is a very challenging issue in process industry. There are several 

techniques to estimate multiphase flow parameters. However, these techniques need correct identification of the 

flow regimes first. Artificial Intelligence is one promising technique for identification of the flow regimes. In this 

paper we used Artificial Neural Network in identifying the flow regimes using multiphase flow parameters such as 

superficial velocity of liquid and gas, pressure drop, liquid hold up and Reynolds’ number. We proposed a pre-

processing stage to normalize large data range and to reduce overlapping between flow regimes.  It was shown that 

using the natural logarithms of certain flow parameters as inputs to neural network improved the identification 

process. 
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1. Introduction  
 Multiphase flow refers to the simultaneous flow of two phases or more and they can be liquid, gas, 

solid,  two components from the same phase such oil and water, or two phases single component such as 

water vapor and liquid. Multiphase flow is encountered in many industries and processes such as oil and 

gas industry and petrochemical process, and there is an increasing demand for more accurate multiphase 

metering.  Several approaches were reported in the literature to estimate the flow rate of each phase in 

multi-phase flow. One of the common difficulties in these techniques is the need to identify the flow 

regime first for better estimation of the multiphase flow parameters. Flow regimes are more than 20 types 

including bubble flow, slug flow, annular flow and many more. These flow regimes depend on many 

factors such as pipe inclination, phase composition and physical properties, and velocity of the individual 

fluids. The overlapping between these flow regimes especially at the transient zones make accurate 

identification more difficult to achieve. The flow regime identification errors, in turn, introduce metering 

errors, as conventional meters usually assume one type of flow regimes and are tuned based on it. 

Accordingly, correct identification of the flow regimes could greatly improve the multiphase flow 

measurement (Bratland O. (2008)).  

 Artificial Intelligence is a promising technique to identify flow regimes. Xiea et al. (2004) used 

transportable artificial neural network for the classification of flow regimes. They studied three phase 

flow (Gas/Liquid/Fiber) in Vertical Pipe. They used 7 inputs in terms of normalized pressure signals 

(standard deviation, coefficients of skewness and kurtosis, and several second-order correlation terms). 

They reported classification problems in the transition zone.  Rosa et al (2010) tried to develop an expert 

system to identify the flow regime using clustering techniques and studied 6 flow patterns. Four statistical 

momentums (mean, standard deviation, skewness and kurtosis) and Probability Density Function (PDF) 
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of instantaneous line average void fraction are used as inputs to the system. They used clustering data 

clustering methods. They showed that clustering algorithms have low correct identification rate because 

of confusion at transition zones when number of flow regimes is large. They concluded that Knowledge 

base is required to assist neural network  

 El-Sebakhy (2010) used adaptive Neuro Fuzzy Interference System (ANFIS) for flow regimes 

classifications. He selected ANFIS because of its ability to predict the output in uncertain conditions. 

ANN Inputs are liquid superficial velocity, gas superficial velocity, pressure, temperature, fluid 

properties. He studied 4 flow regimes: Annular, Slug, Wavy and stratified.  His results showed high 

correct classification rate, but suffered from misclassifications at transition zones. Murat and Ertan (2012) 

implemented three AI techniques: Nearest Neighborhood (NN), Back propagation Neural Network 

(BNN) and classification tree (CT) to identify the flow regime and estimate liquid hold up.  He used 

Reynolds number for both gas and liquid as neural network inputs. He considered 7 flow regimes in his 

study. To improve the performance, he scaled the gas Reynolds number to overcome the issue of 

overlapping between flow regimes. He concluded that BNN has best performance in flow regimes 

identification. 

 In this work we used simple ANN with only two inputs to identify 4 types of multiphase flow 

regimes. We studied pre-processing the data before feeding them to the neural network by using nonlinear 

transformation of the original parameters.  This pre-processing stage helps in scaling large data range 

properly to reduce the effect of overlapping between flow regimes, and achieves better identification of 

the flow type in the transition regions. 

 First, the simulation method of multiphase flow using the unified model of Zhang et al. (2003) and 

Zanng and Sarica (2006) is discussed in Section 2. The selected Multiphase flow regimes and the input 

parameters are explained briefly in section 3. Finally, the simulation for various ANN inputs sets, and the 

analysis and discussion, are presented in Section 4. 

 

2. Unified Model  
 The unified model is used for generating data for testing various flow classification techniques. 

Zhang et al., (2003), and Zhang and Sarica (2006) proposed a unified model for prediction of gas-oil-

water flow behavior in wellbores and pipelines based on slug dynamics.  This model describes three-

phase flow based on two criteria: gas-liquid flow pattern and oil-water mixing status.  The three-phase 

flow was treated as gas-liquid two-phase flow if the two liquids are fully mixed or as a three-layer 

stratified flow at low flow rates in horizontal or slightly inclined pipes.  Closure relationships describing 

the distribution between the two liquid phases were proposed.  Experimental data for gas-oil-water pipe 

flow from many studies in literature were used to evaluate the model. The Zhang et al. (2003) flow 

pattern map in their unified model was used to compare also with Taitel and Dukler (1976) flow pattern 

maps for the gas-liquid flow patterns and showed excellent agreement. Due to the confidence received by 

unified model in literature, it was decided to use the resulted data from the Unified model to train our 

ANN in this study.  

3. Flow Regimes Maps 
 There are many flow pattern maps to describe flow regimes using different multiphase flow 

parameters. Superficial velocities of liquid and gas are popular parameters on the two-dimensional axis’s 

of the map for identification of flow regimes as shown in Fig. 1. 

Annular flow is characterized by the presence of a liquid film flowing on the channel wall in an 

annulus-shaped flow, the gas flows in the gas core. Annular flow happens at high gas superficial 

velocities. 

 In stratified flow the two phases are separated from each other by a continuous interface. For 

example, water flows at the bottom of a horizontal pipe. The interface may be smooth or wavy according 

to the gas flow rate. 
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Fig. 1. Gas-liquid flow pattern map in a horizontal. (Bratland O. (2009)) 

  

 Dispersed bubble flow is characterized by the flow where one phase is dispersed in the other 

continuous phase. For example, in gas-liquid flow the gas phase becomes bubble flow when the gas flow 

rate is small compared to the liquid flow rate. In Intermittent flow, liquid and gas can alternate in flow 

causing sequences of plug/slug patterns. 

 In Fig.1 𝛼𝐿 is the volume fraction of the liquid phase, and 𝛼𝐺   is the volume fraction of the gas phase.   

 The superficial velocity of liquid (VsL) and gas (VsG) can be defined as: 

 

 𝑉𝑠𝐿 =
𝑞𝐿

𝐴
 = 𝛼𝐿𝑣𝐿                  (1) 

 

 𝑉𝑠𝐺 =
𝑞𝐺

𝐴
 = 𝛼𝐺𝑣𝐺                 (2) 

 

 Where: 𝑞𝐿  and qG are volume flow rates of the liquid and gas respectively. 

 Liquid Hold 𝐻𝐿 is another important multiphase flow parameter, which can be defined as: 

 

 𝐻𝐿 =
𝐴𝐿

𝐴
                    (3) 

 

 Where: 𝐴  is pipe cross sectional area and  𝐴𝐿 is the cross sectional area occupied by liquid. 

 Another multiphase flow parameter is Pressure Drop per unit pipe length 
𝑑𝑃

𝑑𝑥
 which can be 

calculated as: 
 

 
𝑑𝑃

𝑑𝑥
=  

𝑑𝑃

𝑑𝑥𝑎𝑐𝑐
+

𝑑𝑃

𝑑𝑥𝑓
+

𝑑𝑃

𝑑𝑥𝑔
                (4) 

 
 Where: 

 
𝑑𝑃

𝑑𝑥𝑎𝑐𝑐
  is the acceleration pressure gradient. 

 

 
𝑑𝑃

𝑑𝑥𝑓
     is the frictional pressure gradient. 

 

 
𝑑𝑃

𝑑𝑥𝑔
    is the gravitational pressure gradient. 
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 However, these maps depends on dimensional parameters which means they work for a certain pipe 

diameters and flow conditions. Reynolds number for liquid (ReL) and gas (ReG) are candidate parameters 

that can be used to develop a dimensionless maps: 

 

 𝑅𝑒𝐿 =
𝜌𝐿𝑉𝑆𝐿𝐷

𝜇𝐿
                  (5) 

 

 𝑅𝑒𝐺 =
𝜌𝐺𝑉𝑆𝐺𝐷

𝜇𝐺
                  (6) 

                                                                                                              

 Where: 

 𝜌𝐿 , 𝜌𝐺   are densities of liquid and gas respectively. 

 𝜇𝐿 , 𝜇𝐺 are viscosities of liquid and gas respectively. 

 𝐷 is the pipe diameter. 

 

4. Simulation 
 In this work we considered two-phase flow in four flow regimes: Stratified (STR), Dispersed 

Bubbles (DB), Intermittent (INT), and Annular (AN). We studied a horizontal pipe with diameters of 2.54 

cm, and used 946 points divided as follows: 277 for Annular, 264 for Dispersed Bubble, 252 Intermittent 

and 153 for Stratified. The Data is divided into 70% for Training, 15 % for Validation and 15 % for 

Testing. In each case, the Neural Network model has 2 inputs, one hidden layer with 20 neurons, and 4 

outputs. We considered the following pairs of multiphase parameters; (VsG, VsL), Total pressure drop and 

liquid hold (dP, HL), and the Reynolds numbers for the liquid and gas flows (ReL, ReG) Since Neural 

Network cannot handle nonnumeric outputs, we represent the flow regimes with the target numeric values 

shown in Table.1. 

    
Table 1. Numerical representation of flow regimes. 

 

Flow Regime Numerical Value 

Annular 1000 

Dispersed Bubble 0100 

Intermittent 0010 

Stratified 0001 

 

 Different configurations of input parameters are used in neural networks model:  

1. Liquid Superficial velocity (VsL) and Gas Superficial velocity (VsG). 

2. Natural Logarithmic of VsL  and VsG  

3. Total Pressure Drop (dP) and Liquid Hold up (HL). 

4. Natural Logarithmic of dP and HL. 

5. Liquid Reynolds Number (ReL) and Gas Reynolds Number (ReG). 

6. Natural Logarithmic of ReL, ReG. 

 

Fig. 2 indicates some regions of overlapping and critical parameter values for flow regimes. For 

example the overlapping of intermittent flow and stratified flow at low liquid superficial velocity can 

easily cause regime identification errors. On the other hand, in some cases a small change in a critical 

parameter could trigger change of flow regimes. For example, a change of gas velocity from 12 to 13 can 

cause the flow regime to change from bubbles to intermittent. As such, identification errors could easily 

happen due to measurement noise in the gas velocity at these critical values.   
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Fig. 2. Regions of the four flow regimes using (VsG, VsL ). 

   

 For the (dP, HL) pair, the range of the flow regimes is depicted in Fig. 3. Clearly, the situation is 

much worst with clear overlapping between the stratified and Intermittent at low pressure drop values, 

and overlapping between Annular and Intermittent at low liquid hold up values.   

 

 

  Fig.3. Regions of the four flow regimes using (dP, HL). 

 

 Similar behavior was observed when we examined the range of the parameter pairs (ReG, and ReL). 

Another issue for Reynolds number is unbalance data distribution along large range as shown in Fig.4. 
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Fig.4. Regions of the four flow regimes using (ReG, ReL). 

   

 Next we studied the possibility of using nonlinear mapping of the flow parameters to improve the 

separation between the regions of the flow regimes. We report here the result of taking the natural 

logarithm. Fig. 5 shows the regions of the four flow regimes using Ln (VsG) and Ln (VsL).  

 

 

Fig. 5. Regions of the four flow regimes using the natural logarithm of (VsG, VsL). 

 

Fig.6 shows a clear separation of the regions for each of the considered flow regimes. A more impressive 

result was observed when we considered the (Ln (dP), Ln (HL)) as shown in Fig. 5. In fact, the observed 

overlapping between Intermitted and Stratified disappeared. 
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Fig.6. Regions of the four flow regimes using the natural logarithm of (dP, HL). 

 

Fig.7. Regions of the four flow regimes using the natural logarithm of (ReL, ReG). 

   

 In the case of the Reynolds number pairs, the logarithmic mapping not only helps to have better 

separation between the regions of the regimes, but also provides efficient scaling of the parameter range 

as shown in Fig.7. Table. 2 shows the results of flow regimes prediction using different configuration of 

input parameters sets. Improvement in flow regimes identification can be noticed using natural 

logarithmic of original parameters. For VsL and VsG, the improvement is 3.5 %, for dP and HL is 13.4 % 

and for ReL and ReG is 4.9 %.   
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Table 2. Percent of correct classification. 

 

 As can be seen in the confusion matrices in Table. 3 based on test data, the first common thing is that 

confusion is reduced by using natural logarithmic. For Dispersed Bubble, Intermittent and Annular, the 

confusion is reduced by using the normalized inputs. For Stratified flow, the confusion is reduced in all 

cases except for the case of Reynold number which slightly less accurate. The results for stratified flow 

can be improved if the data points can be increased for this flow regimes to make a balance between flow 

regimes in terms of data points. 

 
Table 3.  Incorrect Classification: (a) VsL & VsG, (b) Ln (VsL) & Ln (VsG). (c) dP & HL, 

(d) Ln (dP) & Ln (HL), (e) ReL & ReG, (f) Ln (ReL) & Ln (ReG). 

 % Incorrect Classification 

 AN DB INT STR 

AN --------------- 0  % 0% 3.7 % 

DB 0 % --------------- 6.1 % 0 % 

INT 2.9 % 0 % --------------- 5.9 % 

STR 0 % 0 % 0 % --------------- 

Total 2.9% 0 % 6.1 % 9.6 % 
(a) 

 % Incorrect Classification 

 AN DB INT STR 

AN --------------- 0  % 0% 3.6 % 

DB 0 % --------------- 0 % 0 % 

INT 0 % 0 % --------------- 0 % 

STR 0 % 0 % 0 % --------------- 

Total 0 % 0 % 0 % 3.6 % 
(b) 

 % Incorrect Classification 

 AN DB INT STR 

AN --------------- 0  % 1.7 % 17.2 % 

DB 0 % --------------- 3.2 % 0 % 

INT 0 % 3.6 % --------------- 0 % 

STR 24.0 % 0 % 16.0 % --------------- 

Total 24.0 % 3.6 % 20.9 % 17.2 % 
(c) 

 

 

 % Correct Classification 

Parameter/ 

Regime 

Annular Dispersed 

Bubble 

Intermittent Stratified Total 

VsL , VsG 98.1 % 100.0% 93.9 % 84.0 % 95.1 % 

Ln( VsL ), Ln( 

VsG ) 

100.0 % 100.0 % 100.0 % 92.0 % 98.6% 

dP , HL 88.7 % 96.8 % 81.8% 60.0 % 83.8 % 

Ln(dP), Ln(HL) 100.0 % 100.0% 97.1 % 88.0 % 97.2% 

ReL, ReG 98.1 % 100.0 % 78.8 % 92.0 % 93.0 % 

Ln(ReL), Ln(ReG) 100.0 % 100.0% 100.0 % 88.0 % 97.9 % 
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 % Incorrect Classification 

 AN DB INT STR 

AN --------------- 0  % 1.8 % 1.8 % 

DB 0 % --------------- 0 % 0 % 

INT 0 % 0 % --------------- 0 % 

STR 0 % 0 % 0 % --------------- 

Total 0 % 0 % 1.8 % 1.8 % 
(d) 

 % Incorrect Classification 

 AN DB INT STR 

AN --------------- 0  % 0 % 3.7 % 

DB 0 % --------------- 8.8 % 0 % 

INT 0 % 0 % --------------- 0 % 

STR 3.6 % 0 % 14.3 % --------------- 

Total 3.6 % 0 % 23.1 % 3.7 % 
(e) 

 % Incorrect Classification 

 AN DB INT STR 

AN --------------- 0  % 0 % 5.4 % 

DB 0 % --------------- 0 % 0 % 

INT 0 % 0 % --------------- 0 % 

STR 0 % 0 % 0 % --------------- 

Total 0 % 0 % 0 % 0 % 
(f) 

 The above results is based on random points selected from the data. Since the transition between flow 

regimes is one of main the confusion reasons, we need to look to the transition points and show the 

improvement in this region due to the natural logarithmic normalization. There are 18 data points at the 

transition between flow regimes in this data set. Table. 4 shows the percentage of misclassified points for 

each case. Although natural logarithmic does not remove confusion at transition completely but the 

improvement using natural logarithmic normalization is very clear.  

 
Table. 4. Misclassified percentage at transition region. 

Parameters Percentage of misclassified 

VsL , VsG 50 % 

Ln(VsL), Ln(VsG) 16.7 % 

dP , HL 55.6 % 

Ln(dP), Ln(HL) 38.9 % 

ReL, ReG 38.9 % 

Ln(ReL), Ln(ReG) 22.2 % 

 
5. Conclusion 
 Flow regimes identification is one of the most difficult tasks in multiphase flow analysis. It is shown 

that simple nonlinear transformation of multiphase parameters using natural logarithm leads to better 

scaling and separation of the regions for multiphase regimes. In this work we utilized natural logarithmic 

to normalize and scale the data for use in simple neural networks with only two inputs for identifications 

of four flow regimes. The performance of the neural networks showed noticeable improvement over the 

original parameters. The best results is achieved by using the natural logarithm of the superficial 
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velocities and the natural logarithms of Reynolds numbers. Next step is to test this approach on 

experimental data to evaluate its performance on noisy data. 
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