
Proceedings of the 2nd International Conference on Fluid Flow, Heat and Mass Transfer 

Ottawa, Ontario, Canada, April 30 – May 1, 2015 

Paper No. 151 

151-1 

 

Actuation of Flexoelectric Membranes in Viscoelastic Fluids 
with Application to Outer Hair Cells 

 

Edtson Emilio Herrera Valencia 
Faculty of Higher Education Zaragoza, National Autonomous University of Mexico, Department of 

Chemical Engineering,  

Campus I: Av Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C. P. 09230,  

Mexico City, Mexico  

edtson_ed@hotmail.com 
 
 
Abstract- Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending and it is 

used by the Outer Hair Cells (OHC) located in the inner ear, whose role is to amplify sound through generation of 

mechanical power.  Oscillations in the OHC membranes create periodic viscoelastic flows in the contacting fluid 

media. A key objective of this work on flexoelectric actuation relevant to OHC is to find the relations and impact of 

the electro-mechanical   properties of the membrane, the rheological properties of the viscoelastic media, and the 

frequency response of the generated mechanical power output.  The model developed and used in this work is based 

on the integration of: (i) the flexoelectric membrane shape equation applied to a circular membrane attached to the 

inner surface of a circular capillary, and (ii) the coupled capillary flow of contacting viscoelastic phases, such that 

the membrane flexoelectric oscillations drive periodic viscoelastic capillary flows, as in OHCs. By applying the 

Fourier transform formalism to the governing equation an analytical expression for the transfer function, associated 

to the curvature and electrical field, power dissipation elastic storage were found. The integrated 

flexoelectric/viscoelastic model and the novel findings contribute to the ongoing quest for a fundamental 

understanding of the functioning of outer hair cells (OHC), especially on the role of membrane deformation in 

delivering mechanical power through electromotility and its frequency-dependent power conversion efficiency. 
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1. Introduction 
 In Nature and physiology, biological liquid crystals play significant roles as multifunctional materials 

(Abou-Dakka et al. 2012). This paper presents theory and simulation of a physiological actuator device 

whose functioning hinges on unique electro-mechanical properties of  mesophases  and  that provides an 

example of responsive self-organized materials.  The functioning of Outer Hair Cells (OHC) in the inner 

ear involves electric-field driven periodic curvature oscillations of liquid crystal (LC) elastic membranes 

that impart momentum and flow to the contacting viscoelastic fluids; the electric field actuation of the 

liquid crystal membrane is known as flexoelectricity (Abou-Dakka et al. 2012; Herrera-Valencia, Rey  

2014). The key role of  OHC is sound amplification in the presence of viscous dissipation and elastic 

storage (Abou-Dakka et al. 2012; Herrera-Valencia, Rey 2014). Hence, the full description and 

understanding of OHC functioning  has to include the frequency response of flexoelectric membranes 

embedded in viscous and viscoelastic media due to an oscillating E field (Abou-Dakka et al. 2012; 

Herrera-Valencia, Rey  2014).   The field of flexoelectric membranes was pioneered and developed by 

Petrov and co-workers (Abou-Dakka et al. 2012; Herrera-Valencia, Rey  2014). The generic and key 

features of the electrical to mechanical energy conversion system in OHCs). The input oscillating E field, 

through the electromechanical flexoelectric effect, produces curvature oscillations in the elastic 

membrane that forms the OHC (Abou-Dakka et al. 2012; Herrera-Valencia, Rey 2014) and that is 

surrounded by viscoelastic media. In turn, the oscillating elastic membrane displaces the contacting 
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viscoelastic liquids through the mechanical viscoelasto-elasticity effect (Abou-Dakka et al. 2012; Herrera-

Valencia, Rey  2014). The combined effect that allows the electro-mechanical energy conversion is based 

on the integration of flexoelectric effect (E field imposed on flexoelectric membrane) and the mechanical 

effect (membrane elasticity plus viscoelastic bulk fluid flow) (Abou-Dakka et al. 2012; Herrera-Valencia, 

Rey A.D. 2014). The two key issues in this energy conversion device are:  

(i) How much power P is eventually delivered to the contacting viscoelastic fluids from the 

imposed oscillating electric field E and how much stored membrane elastic energy Em is 

required to deliver that power, and 

(ii) Under which material conditions, a well-localized resonant power peak is found (in the 

spectrum of P), as physiologically required. 

 

  As expected, the issues (i) and (ii) identified above depend on (a) the E-frequency as well as on 

(b) the material properties of the bio-device components discussed below (Abou-Dakka et al. 2012; 

Herrera-Valencia, Rey 2014). 

 

1.1. Frequency response 
 The intensity of the linear momentum transfer from the oscillating membrane to the contacting 

viscoelastic fluids depends on the imposed frequency (Abou-Dakka et al. 2012; Herrera-Valencia, Rey 

A.D. 2014). Hence frequency-dependent viscoelasticity is an essential ingredient of this important 

biological LC electro-mechanical oscillator (Abou-Dakka et al. 2012; Herrera-Valencia, Rey A.D. 2014). 

Viscoelasticity is an important frequency-dependent property of synthetic and biological materials and 

processes (Abou-Dakka et al. 2012; Herrera-Valencia, Rey 2014). Biological systems respond differently 

to inputs of different frequencies (Abou-Dakka et al. 2012; Herrera-Valencia, Rey A.D. 2014). Some 

systems may amplify components of certain frequencies, and attenuate components of other frequencies 

(Abou-Dakka et al. 2012; Herrera-Valencia, Rey 2014) , and this property is crucial to understand the 

processes that control the functioning of OHCs  (Abou-Dakka et al. 2012; Herrera-Valencia, Rey A.D. 

2014) and  hearing processes (Abou-Dakka et al. 2012; Herrera-Valencia, Rey  2014). The frequency 

response (Abou-Dakka et al. 2012; Herrera-Valencia, Rey 2014) is the relationship between the system 

input and output in the Fourier domain.  

 

1. 2. Materials 
 Nematic liquid crystals (NLC) are multifunctional self-organizing viscoelastic anisotropic materials 

whose orientational order responds to external flow, electromagnetic, chemical, optical and surface fields 

(Petrov 2014; Rey 2005, 2006a-c, 2008a,b) the orientational order is defined by the director n and the 

elastic distortions by director gradients n  (Petrov 2014; Rey 2005, 2006a-c, 2008a,b).  A distinguishing 

and novel property of nematics is flexoelectricity (Petrov 2014; Rey 2005, 2006a-c, 2008a, b) which 

describes the coupling between orientational gradients and electric polarization, such that an applied 

electric field creates orientational distortions and distortions create macroscopic polarization (Petrov 

2014; Rey 2005, 2006a-c, 2008a,b). Thin layers and biological membranes behave like liquid crystals, 

membranes should also exhibit flexoelectricity or couplings between polarization and bending  

 (Abou-Dakka et al. 2012; Herrera-Valencia, Rey  2014, Rey 2005, 2006a-c, 2008a, b). Figure 1 

shows a schematic of flexoelectric polarization in rod-like and banana-like molecules and the 

corresponding membrane flexoelectric polarization; as noted above the physics and modeling is affected 

by identifying the director field n with the membrane normal k.   

 

As a partial result, both the direct and converse membrane flexoelectric effects are sensor-actuator 

properties when membrane curvature and polarization are coupled as in nematic liquid crystals.  

Membrane flexoelectricity due to its inherent sensor-actuator capabilities is an area of current interest in 

soft matter materials (Abou-Dakka et al. 2012; Herrera-Valencia, Rey 2014). Over the years, much 

literature has dealt with the problem of measuring flexoelectric coefficients in various liquid crystals 
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(Abou-Dakka et al. 2012; Herrera-Valencia, Rey 2014). For typical LC membranes, these coefficients 

range from 3-20 pC/m, but recent experiments have reported flexoelectricity coefficients of up to 35 

nC/m in bent-core liquid crystals (Abou-Dakka et al. 2012; Herrera-Valencia, Rey 2014). Such large bend 

coefficients make bent-core liquid crystals practical materials for mechano-electric transduction (Abou-

Dakka et al. 2012; Herrera-Valencia, Rey 2014).  

 The specific objectives of this paper are: 

(1) To derive a high order dynamic  linear model for a flexoelectric membrane attached to a 

capillary tube that contains viscoelastic liquids and is subjected to a fluctuating small 

amplitude electric fields of arbitrary frequency; 

(2)  To compute the frequency response of the electromechanical device, taking into account the 

viscoelastic nature of the contacting fluids; 

(3) To use the modelling results to characterize the role of membrane flexoelectricity and 

contacting fluid viscoelasticity on the transfer function of the device; 

 

 
(a)      (b) 

Fig. 1.  (a) Flexoelectricity in rod-like and banana-shaped nematic liquid crystals due to slay and bend deformations 

of the director n.  (b) Flexoelectricity in biological membranes due to bending curvature described by surface 

gradients of the unit normal k. The correspondence between nematic flexoelectricity and membrane flexoelectricity 

is obtained when the director n is identified with the membrane unit normal k. Adapted from Abou-Dakka et al. 

(2012). 

 

 As a partial result, both the direct and converse membrane flexoelectric effects are sensor-actuator 

properties when membrane curvature and polarization are coupled as in nematic liquid crystals.  

Membrane flexoelectricity due to its inherent sensor-actuator capabilities is an area of current interest in 

soft matter materials (Abou-Dakka et al. 2012; Herrera-Valencia, Rey 2014). Over the years, much 

literature has dealt with the problem of measuring flexoelectric coefficients in various liquid crystals 

(Abou-Dakka et al. 2012; Herrera-Valencia, Rey 2014). For typical LC membranes, these coefficients 

range from 3-20 pC/m, but recent experiments have reported flexoelectricity coefficients of up to 35 

nC/m in bent-core liquid crystals (Abou-Dakka et al. 2012; Herrera-Valencia, Rey 2014). Such large bend 

coefficients make bent-core liquid crystals practical materials for mechano-electric transduction (Abou-

Dakka et al. 2012; Herrera-Valencia, Rey 2014).  

 The specific objectives of this paper are: 

(4) To derive a high order dynamic  linear model for a flexoelectric membrane attached to a 

capillary tube that contains viscoelastic liquids and is subjected to a fluctuating small 

amplitude electric fields of arbitrary frequency; 

(5)  To compute the frequency response of the electromechanical device, taking into account the 

viscoelastic nature of the contacting fluids; 

(6) To use the modelling results to characterize the role of membrane flexoelectricity and 

contacting fluid viscoelasticity on the transfer function of the device; 
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2.  Physical Problem 
 In this work, we model the system in the frequency domain, include momentum inertia, and develop 

a generic approach that can be used in the future with any viscoelastic constitutive equation, as required 

by experimental results (Abou-Dakka et al.2012; Herrera-Valencia & Rey 2014). The physical set-up and 

geometry of the flexoelectric membrane tethered to a capillary tube containing two viscoelastic fluids is 

depicted in Figure 2.  

 

 
Fig. 2. Schematic of the geometry and operation of flexoelectric mechanics defined in Figure 2, in a capillary 

geometry of radius a and axial length L. 

 

 The input E  field distorts the initially flat circular membrane into a spherical cap of radius R  and 

height h . The flexoelectric actuation creates a capillary viscoelastic flow in the contacting top (t) and 

bottom (b) fluids of viscosities t b,  , relaxation times  t b,   and fluid densities  t b,   

respectively. Adapted from Abou-Dakka et al. (2012) 

 A capillary tube of radius “a” contains an edge-fixed flexoelectric membrane located at z = 0. Above 

and below the membrane there are two viscoelastic fluids with column heights z = L, viscosities  b tη ,η

relaxation times  b tλ ,λ  and densities  b tρ ,ρ respectively. The pressure at the top of the upper layer 

and at the bottom of the lower layers are equal to a constant, i.e.    t b 0p ξ 2L,t p ξ 0,t p    . By 

imposing a fluctuating electrical field  E (t) the membrane oscillates and displaces the upper and lower 

incompressible viscoelastic fluids; we emphasize that the Poiseuille flow is only generated by the 

flexoelectric effect of the membrane caused by the imposed  tE  field (Rey 2005, 2006a-c, 2008a,b; 

Abou-Dakka et al. 2012; Herrera-Valencia & Rey  2014). The membrane deformation is described by a 

spherical dome of height h and radius R (Rey 2008a-c). 

 

3. Electro-rheological Model  
 Here, we show that in the inertia-less regime the model can be mapped into a standard mechanical 

spring-dashpot model (Herrera-Valencia & Rey 2014). By neglecting the momentum inertia, and 

characterizing the viscoelastic media with two Maxwell fluids, the following second order linear 

differential equation was obtained by Abou-Dakka et al. (2012) and generalized by Herrera-Valencia & 

Rey (2014).  
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 Where 1-k/k  is the inverse of the dimensionless effective membrane tension, i.e. 1-k/k = 1/M . The 

curvature viscous  *

1 η
b k, 

 
and curvature inertial  *

t b2b k, λ λ  material functions are defined by: 

 

     t b* *
t b1 2η η

1 k λ λ
b k, 1+ Σ     ,   b k, λ λ

k k

 
   

 
         (2a, b) 

 

3. 1. Dimensionless numbers 

 The governing Equation (4) contains five dimensionless numbers *
t b 0η

 ,Σ ,k,De,a  , which are 

associated with the following mechanisms: (i) Memory  t b  : product of the viscoelastic 

dimensionless times t , and b ,  it obeys, t b 1    and  defines the elastic asymmetry of the fluids.  

 When t b 1    (highly asymmetric case) one of the fluids is nearly inelastic, and when  

t b 1/ 4    (highly symmetric case) both fluids are equally elastic; (ii) Bulk Viscosity

 t bt bt bη
Σ = η +η = G λ +G λ : total viscosity in the system, where the elastic dimensionless moduli 

satisfy t bG +G 1 . The numerical value of this number is controlled by the product between the two 

dimensionless Maxwell time numbers t b  ,  t b
η η

Σ =Σ λ λ ; (iii) Elastic ratio  k : dimensionless ratio 

between the  membrane  and the total system elasticity :  
1

0< k = 1 1/ M 1


  . A floppy (soft) and stiff 

(rigid) membrane corresponds to k<<1 and k 1  respectively. The elastic ratio,  k = k M  is 

determined by the dimensionless elastic membrane modulus; (iv-v). The Deborah De  and flexoelectric 
*

0a  numbers given by: 

 

 
   t b t bi

ve t b

a ρ ρ / G + Gt
De = =

t λ +λ


;  * f 0

0

c E a/4L
a

M


         (3a, b) 

 

 
*

0a  is the dimensionless conversion of electric to elastic energy or equivalently the static transfer 

function at zero frequency (Abou-Dakka et al. 2012; Herrera-Valencia & Rey  2014). 

 

3. 2. Response mode classification 
 To satisfy Equations (4-6), besides the restrictions noted above, the maxima and minima values of the 

total dimensionless bulk-viscosity number  min max,
η η

Σ Σ  must be bounded by the values of the Maxwell 

relaxation times in the bottom and the top fluids.  Under perfect symmetry (identical elasticity in top and 

bottom fluids)  t bλ λ =1/4  , and the total viscosity is fixed at max min 0.5 
η η

Σ Σ , while under nearly 
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total asymmetry  t bλ λ ε <<1 , the total viscosity can vary between 
max min1, ε 1  

η η
Σ Σ .  

 According to the magnitudes of the three dimensionless numbers  t b , , k 
η

Σ , the system 

(Equations 4-6) displays six distinct modes,  summarized in Table I.  These six modes arise since the 

memory symmetry can be high (HS) or low (LS), the total viscosity high (HV), medium (MV) or low 

(LV), and the membrane can be floppy (FM) or stiff (SM).  For example, in Table I the third row mode 

{LS, LV, FM} corresponds to low symmetry, low viscosity and floppy membrane. This effective mode 

classification narrows down the parametric envelope of biological significance.   

 
Table 1. Device response modes.  

 

System’s Modes 

 

 

t bλ λ  

 

 

  t b
η η

Σ Σ λ λ  

 

k  

 

I Low Symmetry, Low Viscosity, Floppy membrane {LS, LV, 

FM} 

 
ε  

 

 
ε  

 



k << 1

k ε
 

II Low Symmetry, Low Viscosity, Stiff Membrane  

{LS, LV, SM} 

ε  ε  1  

III Low Symmetry, High Viscosity, Floppy Membrane {LS, 

HV, FM} 

 
ε  

 

1ε  


k << 1

k ε
 

IV Low Symmetry, High Viscosity, Stiff Membrane 

 {LS, HV, SM} 

ε  1ε  1  

 

V High Symmetry, Intermediate Viscosity, Floppy Membrane 

{HS, IV, FM} 

 

 

1/ 4  
 

1/ 2  

 

 

k << 1  

VI High Symmetry, Intermediate Viscosity, Stiff Membrane 

{HS, IV, SM} 

 

1/ 4  
 

1/ 2  

 

 

1  

t b  : memory, 
η

Σ : viscosity, k: elasticity ratio,  410 ε  

 

 The specific numerical values in Table I are selected as to be characteristic of each mode. The six 

modes in Table I, can be represented by the vertices of a prismatic 3D material space shown in Figure 3, 

spanned by fluid memory  t b  , membrane elasticity  k , and total fluid viscosity  ηΣ . The front 

edge of the prism, defined by the line  
4

t b 10 ,   1
η

Σ , 0<k<1 
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Fig. 3. Prismatic material space for the six possible modes of Equations (1-3), shown in Table I. The vertical axis is 

the memory of the fluids, the horizontal is the elasticity ratio k, and the axis into the page is the total viscosity of the 

fluids. The six vertices correspond to the six modes in Table I. 

 

4.  Fluid Power Dissipation  

 The average power delivered to the viscoelastic fluids  P   by the oscillating membrane is the 

period average of the product of the input force    E t, Exp iωt   times the flow rate 

   1t, 2 dH t, / dt       and is proportional to imaginary part of the transfer function of Equation 

(7), i.e.,  DIm[F ω ] :  

 

        D

1
P ω Re E t,ω Re t, ω Im F ω

2
         
     

        
(4)  

 

 Notice that, in this particular case, It is used an analytical complex function (exponential function) to 

describe the input force (electrical field), but it can be generalized with a stochastic function trough a 

Fourier series (Herrera et al. 2009, 2010). 

 

5. Numerical Results  
 Figure 4 shows the power dissipation as a function of the dimensionless frequency   for the modes 

{I, III, V}, without inertia (a) and the power dissipation as a function of the elastic ratio in the mode III. 

Inertialess conditions generate a broader power peak only in mode III (large viscosity) since dissipative 

modes persist with higher frequencies. These facts follows from the fact that the power is proportional to 

the imaginary part of the transfer function (see Equation 10) and according to the asymptotic results of 

Appendix C, only under finite inertia  DIm F 
 

converges at large frequency to its static value. Hence 

except for mode III, inertia-less conditions do not generate power pulses. The material properties used in 

the simulation correspond to mode III {LS, HV, FM}.  It is clear that the elastic ratio k plays an important 

role in the amplitude, and affects the symmetry and frequency bandwidth of the resonance.  As expected 

more floppy membranes will result in higher dissipation as they store more energy.  
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(a)           (b) 

Fig. 4.  (a) Power dissipation  P   as a function of the dimensionless frequency   for the mode {I, III, V} in the 

cases where the inertial mechanisms are absent. (b) Power dissipation as a function of the elastic ratio k . The 

material parameters used in the simulation correspond to mode III. Softer membrane generates more power 

dissipation. 

 

6. Conclusion 
 Membrane flexoelectricity is a novel electromechanical coupling effect that occurs in polarizable 

media under geometric curvature (Petrov 2006).  The sensor effect is performed by bending induced 

electric polarization, whereas the converse actuation effect is performed by the membrane curvature 

induced by an imposed electric field (Rey 2005, 2006a-c; 2008a,b). Membrane flexoelectricity is relevant 

to the biological functioning of the Outer Hair Cells (OHC) which act as amplifiers to counteract viscous 

dissipation through mechanic transduction and thus allowing hearing (Brownell 2007; Abou-Dakka et al. 

2012; Herrera-Valencia & Rey 2014). The key challenge is to understand the coupling of oscillatory 

flexoelectric actuation and the viscoelastic phenomena of the fluids that are in contact with the oscillating 

membrane.An efficient method to describe membrane flexoelectricity is to use the liquid crystal analogy 

that follows by identifying the director field of a nematic with the unit normal to the membrane (Abou-

Dakka et al 2012; Herrera-Valencia 2014). A key parameter is the flexoelectric coefficient which for 

biological membranes is of the order of 3-20 pC/m (Abou-Dakka et al 2012; Herrera-Valencia 2014). 

 In this paper we explored the dynamics of the actuation flexoelectric mode. An integrated dynamical 

model for the average curvature of flexoelectric membranes oscillating in viscoelastic fluid media under 

capillary confinement was formulated using a previously presented shape equation based on the liquid 

crystal approach (de Gennes & Prost 1994;  Petrov 2006; Rey 2005; 2006a-c; Rey 2008a,b). The 

membrane curvature dynamics is given by a balance between the viscoelastic stress jump from the 

contacting bulk liquids, the restoring membrane effective tension, and the driving flexoelectric force 

(Abou-Dakka et al. 2012; Herrera-Valencia & Rey 2014). Using the flexoelectric shape equation in 

conjunction with a viscoelastic capillary flow model for the contacting phases we obtained a new average 

curvature dynamic equation (Abou-Dakka et al. 2012; Herrera Valencia & Rey 2014). Applying the 

Fourier transform to the governing partial linear differential equation and using the relation between the 

speed of the average curvature and volumetric flow, a relation between the average curvature and applied 

electrical field was found (Abou-Dakka et al. 2012; Herrera Valencia & Rey 2014).  The corresponding 

dynamic, is a function of the asymmetry of the viscoelastic phases, total bulk viscosity and membrane 

elasticity, through characteristic dimensionless numbers associated to each mechanisms (Abou-Dakka et 

al. 2012; Herrera Valencia & Rey 2014). A thorough parametric study was performed to identify the 

conditions that lead to the emergence of a power pulse (Abou-Dakka et al. 2012; Herrera Valencia & Rey 

2014).   It was found that, the inertial mechanisms play an important role in the resonance curves 

associated to the power dissipation in the relevant modes {I, III, V}, which corresponds to the cases of a 

low and high symmetry of the viscoelastic phases, low and sufficiently large total bulk viscosity and 
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small elastic ratio indicating that less elasticity is stored in the membrane (Abou-Dakka et al. 2012; 

Herrera Valencia & Rey 2014). 

 An evaluation of the present model predictions based on power profile, indicates that the Helfrich-

Flexoelectric-Maxwell fluid model possess the necessary physics to qualitatively capture electro-

mechanical power conversion (Brownell 1985; Petrov 2006; Rabbits et al. 2009) 

The linear model presented here is only valid for electric fields of sufficiently small amplitude, high 

dimensionless frequencies and small deformations. The present theory, model, and computations 

contribute to the evolving fundamental understanding of biological shape actuation through 

electromechanical couplings (Rey 2005; Rey 2006a-c; Rey 2008a-b; Abou-Dakka et al. 2012; Herrera-

Valencia & Rey 2014). 
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