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Abstract- Pulse wave velocity (PWV) is an important index of arterial hemodynamics, which lays the foundation 

for continuous, noninvasive blood pressure automated monitoring. The goal of this paper is to re-examine the 

accuracy of PWV prediction based on a traditional homogeneous structural model for thin-walled arterial segments. 

In reality arteries are described as composite heterogeneous hyperelastic structures, where the thickness dimension 

cannot be considered small compared to the cross section size. In this paper we present a hemodynamic fluid - 

structure interaction model accounting for the 3D material description of multilayer arterial segments based on its 

histological information. The model is suitable to account for the highly nonlinear orthotropic material undergoing 

finite deformation for each layer. An essential ingredient is the notable dependence of results on nonlinear aspects of 

the model: convective fluid phenomena, hyperelastic constitutive relation for each layer, and finite deformation. The 

dependence of PWV on pressure for three vessels of different thicknesses is compared against a simplified thin wall 

model of a membrane shell interacting with an incompressible fluid. Results show an asymptotic accuracy of an 

order of h/r0 is predicted. This work help lays the foundation for continuous, noninvasive blood pressure automated 

monitoring based on PWV. 
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Nomenclature  

A Cross sectional area (m
2
) 

u Axial flow velocity (m/s) 

p Transmural pressure (Pa) 

ρ Density of incompressible 

fluid (kg/m
3
) 

f Friction term (m/s
2
) 

00 ,rri  Internal wall and mid-wall 

radii in a zero stress 

condition respectively (m) 

η Ratio of the wall deflection 

to r0 

xr   ,,  Stretch ratios in a radial, 

circumferential and axial 

directions respectively 

 , x  
Circumferential and axial  

Cauchy stress components 

(Pa) 

E , rE  Circumferential and axial 

Green-Lagrange strain 

components 

A  








2212

1211

AA

AA
 Symmetric 

tensor of material constants  

Subscripts  

(t,x) Derivatives by time and 

axial coordinates 

Superscripts  

T Transposition 

 
 
1. Introduction 
 The potential of estimating arterial blood pressure based on PWV has been investigated based on 
statistical regression models, or empirical representation of an incremental isotropic elastic modulus as a 

function of a transmural pressure [1,2]. Relating physically based characterizations verified in vitro [3,4] 

and in vivo, have been created by modeling arteries as fluid-filled compliant thin walled cylindrical 

membrane shells. The present paper describes a mathematical model predicting PWV propagation with 
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rigorous account of nonlinearities in the fluid dynamics model, blood vessel elasticity, and finite dynamic 

deformation of multi-layer thick wall arterial segments. This study is a continuation of the previous work 

[3-4] in the context of in-vivo validation and application of the proposed methodology to continuous, 

noninvasive blood pressure measurements. In the present work, the arterial wall is considered as a 

heterogeneous composite hyperelastic structure. Healthy arteries are composed of three distinct layers: the 

tunica intima (the innermost layer), the tunica media (the middle layer) and the tunica adventitia (the 

outer layer), as shown in Fig. 1. We discuss a fully 3D material description of each layer, based on a 

material description of an artery in a passive state originally proposed by Fung [5]. A novel mathematical 

model predicting PWV is proposed accounting for nonlinear aspects of a convective fluid phenomena, 

hyperelastic constitutive relations, and finite deformation of a thick arterial wall.    

                                                                                                     

 

Fig. 1. The anatomy of the aortic wall. 

 

2. Materials and Methods 
 
2. 1. Fluid-Structure Interaction Model 
 One dimensional models simulating blood flow in arteries effectively describe pulsatile flow in terms 

of averages across the section flow parameters. Although they are not able to provide the details of flow 

separation, recirculation, or shear stress analysis, they should accurately represent the overall and 

averaged pulsatile flow characteristics, particular PWV. Derivations of one dimensional models can be 

found in a number of papers, see for instance [3, 4, 6], and are not repeated here. 

 Conservation of mass and momentum results in the following system of one dimensional equations 
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 For an impermeable thick wall vessel the pressure – strain relationship is maintained by equilibrium 

condition as a function p=p(η), based on relevant constitutive relations. Noting that 22

0
)1(   rA , and 

assuming that transmural pressure is a smooth function of a wall normal deflection (derivative 

  /pp exists at any point), the total system of equations can be presented in the following non-

conservative form 
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 The characteristics analysis shows that the system (3) is strictly hyperbolic, with real and distinct 

eigenvalues. PWV is associated with the forward running wave velocity, hence it is identified as  
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2. 2. Hyperelasticity of the Vessel Wall 
 Numerous formulations of constitutive models for arteries have been proposed in the literature. In a 

comparison paper [7] it is concluded that the exponential descriptor of the passive behavior of arteries, 

due to Zhou-Fung, is “the best available”.  

 According to Zhou-Fung [5] the strain energy density function for the pseudo elastic constitutive 

relation may be presented in the form 
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 Where c is the material coefficient, Q is the function of the Green-Lagrange strain E  [5] and material 

parameters A  tensors. Applying power series expansion, strain energy can be presented in a form 
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Where the first term corresponds to the classical linear theory, and Ac has a connotation of a linear 

symmetric elastic anisotropic stiffness tensor. The Cauchy – Green stress components are defined as the 

following [5]. 
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 Neglecting inertia forces, the problem of an artery subjected by transmural pressure is described by 

solving equation of equilibrium 
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 Supplemented by constituent equations (8), relations for the principal stretch ratios [5] 
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 And boundary conditions at un-deformed inside and outside radii of the tube. 

 

0)(,)(  orir RpR   (10) 

 
3. Results and Discussion 
 To solve the strongly nonlinear boundary value problem (8) – (11) the method of differentiation by a 

load parameter was used [9]. The input data relating to the Fung’s model material constants correspond to 

the experimental number 71 presented in [7] (here we avail typically used multicomponent notation for 

the material constants, so that b1=A22, b3=A11, b6=A12): c=26.95kPa; A11=0.0089; A12=0.0193; A22=0.9925 

for the tunica media. Following [7] we restrict attention to a two layer model incorporating the tunica 

media and tunica adventitia only, since the tunica intima contributes negligible mechanical strength to the 

arterial wall. Experimental tests, according to [7] indicate that the tunica media is about an order of 

magnitude stiffer than the tunica adventitia (which was based on a several porcine aortas). The Symmetric 

tensor material A is scaled accordingly in the model for the adventitia layer.  
 We are now able to compare the 

performance of a Fung’s single layer model 

with a two-layer structural model and a linear 

elastic model using Fung’s anisotropic material 

constants for a human aorta with an inner 

radius of 10.5mm and an outer radius of 

14.5mm. Figure 2 depicts the effect of internal 

pressure on deflection, taking into account the 

location in the arterial wall. The nonlinear 

single layer model of tunica media only is 4mm 

thick (marked as “nl1”), nonlinear two layer 

model of tunica media and tunica adventitia 

that is 3mm and 1mm thick respectively 

(marked as “nl2”), and a linear single layer 

model which is 4mm thick (marked as “l1”) 

[7]. The linear model is described (7), where 

the first term corresponds to the classical linear 

theory, and Ac has a connotation of a linear 

symmetric elastic anisotropic stiffness tensor. 

We verify the accuracy of the method of differentiation by a load parameter by comparison with the exact 

solution (marked by diamonds). Figure 2 shows that due to material nonlinearity, arterial compliance 

associated with the deflection of an inner surface, is not practically changed when we account for the 

adventitia layer. The latter means that the Fung’s model, based on a homogeneous single layer structure 

for the aortic wall, is sufficient to predict PWV. It follows also from the Figure 2 that the linear model 

reduces dramatically the quality of a mechanical response modeling of an arterial wall.  

Figure 3 depicts the dependence of PWV on pressure for the systolic phase (marked as “SBP”) and a 

diastole phase (marked as “DBP”) for three vessels of different thicknesses. The properties and the 

external radius are the same as for the vessel described in the Figure 2. Following [10] we assume here 

that the flow velocity u=0 for the diastole phase, and is equal to the 20% of PWV for the systole phase. 

All results have been compared with the simplified thin walled model of a membrane shell interacting 

with an incompressible fluid [4]. According to theory [11] an asymptotic accuracy of a thin walled shell 

model is of an order of h/r0 which correlates with the data presented in Figure 3. 

 
Fig. 2. Aortic wall deflection is shown as a function of the 

location in the arterial wall. Non-linear single layer, non-

linear two layers and linear single layer are shown by nl1, 

nl2, l1 respectively. The total thicknesses for all 3 cases are 

the same, with the properties of nl2 changing by an order of 

magnitude at the tunica adventitia.  
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4. Conclusion 
 A novel mathematical model predicting PWV propagation with rigorous account of nonlinearities in 

the fluid dynamics model, blood vessel elasticity, and finite dynamic deformation of multi-layer thick 

wall arterial segments was studied. It was found that the account for the multilayer model affects 

distribution of local parameters in the proximity of the external layer (adventitia), and does not affect 

stiffness related to the internal layer. The latter means that the single layer model is sufficient to predict 

PWV of an arterial segment. Within physiological range of blood pressure the three dimensional effects 

provide the difference for  PWV between thick and a thin wall models that account for approximately a 

4% difference as seen in Figure 3c, where the relative wall thickness ratio ( h/r0) is 0.07. 
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