
Proceedings of the 2nd International Conference on Fluid Flow, Heat and Mass Transfer 

Ottawa, Ontario, Canada, April 30 – May 1 2015 

Paper No. 178 

178-1 

 

Simulation of the Backward-facing Step Flow Using the 
Meshless Local Petrov-Galerkin Method 

 
Juraj Mužík, Luboš Daniel, Emília Mužíková, Peter Košťál 

University of Zilina 

Univerzitna 8215/1, Zilina, Slovak Republic 

muzik@fstav.uniza.sk; lubos.daniel@fstav.uniza.sk; muzikova@uniza.sk; peter.kostal@rc.uniza.sk 

 

 
Abstract- The paper deals with use of the meshless method for incompressible fluid flow analysis. There are many 

formulations of the meshless methods. The article presents the Meshless Local Petrov-Galerkin method (MLPG) – 

local weak formulation of the Navier-Stokes equations. The shape function construction is the crucial part of the 

meshless numerical analysis in the construction of shape functions. The article presents the radial point interpolation 

method (RPIM) for the shape functions construction.  
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1. Introduction 
 Incompressible Navier-Stokes flow in two dimensions is one of the several major problems in fluid 

mechanics that have been extensively studied both theoretically and numerically. In general, the 

formulation of incompressible Navier-Stokes equations using primitive variables is often used, but it has 

limitation in approximating the velocity and pressure. The meshless Local Petrov-Galerkin method 

(MLPG) is truly meshless method which requires no elements or global background mesh, for either 

interpolation or integration purposes. The first article applying MLPG method to compute convection-

diffusion and incompressible flow was by Lin and Atluri (2001). In their work, two kinds of upwind 

schemes were constructed to overcome oscillations produced by convection term. They applied the 

upwind schemes to solve incompressible flow problem based on primitive variables formulation and 

added the perturbation term to the continuity equation to satisfy Babuška-Brezzi condition. But there still 

persists the problem of perturbation parameter determination for high Reynolds number problems. The 

present paper focuses on the MLPG primitive variable method using fractional step method to achieve 

velocity-pressure decoupling to solve incompressible viscous flow (Sataprahma and Luadsonga, 2013).  
 

2. Governing Equations and Fractional-Step Algorithm 
 The governing equations for unsteady incompressible viscous fluid flow are Navier-Stokes equations 

with the continuity equation in the convection term (Sataprahma and Luadsonga, 2013). This equation can 

be written as 
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 Where ui is the velocity in direction i, p is the pressure,  fi is the body force component, ρ is a density 

of a liquid and ν is the kinematic viscosity. Eq.(1) is the momentum equation and Eq.(2) is the continuity 
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equation. A fractional-step algorithm is used to solve this problem (Kovarik et al., 2014). The time 

derivative of the velocity vector in a momentum Eq.(1) can be replaced with a difference approximation 

and following relation is obtained 
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 Where upper indexes n and n+1 indicate the time step. Eq.(3) is explicit formula for convection and 

viscous terms and the implicit one for a pressure term. To simplify Eq.(3) we used the fractional step 

approximation (Kovarik et al., 2014). According this approximation, the intermediate velocity ũi 

components are computed using simplified momentum equation 
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 When we compare Eq.(3) and Eq.(4) we get  

 

 ui
n+1 = ũi −

Δt

ρ

∂pn+1

∂xi
                 (5) 

 
The intermediate velocities ũi does not satisfy the continuity equation (Eq.(2)). The velocities ui

n+1
 must 

satisfy the continuity equation which implies 
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 Eq. (6) is the Poisson’s equation with non-zero source term (Kovarik et al., 2012). The pressure 

Eq.(6) is solved using MLPG over problem domain with boundary conditions p
n
|Γu = p̄

n
 and ∂p

n
/∂n = q̄

n
. 

 

3. The MLPG Method and the Local Weak Formulation 
 The meshless Local Petrov-Galerkin method (MLPG) is truly meshless method which requires no 

elements or global background mesh, for either interpolation or integration purposes.  In MLPG the 

problem domain is represented by a set of arbitrarily distributed nodes (Kovarik, 2011). 

  

 
Fig. 1. Schematic of local quadrature domain, essential and natural interested boundary. 
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 The weighted residual method is used to create the discrete system equation by integrating the 

governing equation over local quadrature domains (see. Fig.1). The quadrature domain can be arbitrary in 

theory, but very simple regularly shaped domain, such as rectangles for 2D problems are often used for 

ease of implementation (Izvoltova and Villim, 2012).  

A generalized local weak form of the pressure Poisson Eq.(6) defined over local sub-domain Ωs can be 

written as 
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 Where p is pressure, w is the test function defined as 
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 Where ds is the size of the local quadrature domain, so it is evident that weighting function value is 

zero on its boundary. The choice if this test function is motivated by its ability to vanish on the boundary 

of local quadrature domain. Using the divergence theorem the Eq.(7) has changed to 
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 Because unknown nodal values of the pressure p, are constants which can be moved out of the 

integral the equation, Eq.(9) can be changed to discrete system of linear equations, where global 

“stiffness” matrix is defined as  
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 and the right-hand side “load” vector is  
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 The term φ in Eq.(10) represents the trial function, in this case the Multi-Quadrics Radial Basis 

function (MQ-RBF), details can be found in Kovarik (2011). The weak form of the equations Eq.(4) and 

Eq.(5) can be written as follows, assuming for simplicity  fi = 0  
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 After application of divergence theorem and eliminating boundary integrals over which the test 

function vanishes, the following form is obtained 

The mass matrix in Eq.(13) a Eq.(14) can be used in either a consistent or lumped form. The lumped 

form is used here, because it eliminates a matrix inversion procedure. The fractional time step algorithm 

described above is now used to solve the Navier-Stokes equations at every time step (Kovarik et al., 

2014): 
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 Step 1: Computation of the intermediate velocity ũ from the velocities at the previous time 

step using Eq. (14), 

 Step 2: Solution of pressure Poisson equation Eq.(9), 

 Step 3: Computation of velocities at the current time step from Eq.(14). 
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4. Numerical Example - backward-facing step flow 
 The flow over a backward-facing step is a widely tested configuration of fluid flow in a channel. The 

geometry and boundary conditions used here are chosen to be similar to those of Najafi et al. (2012) or 

Erturk (2008) to facilitate comparison (see Fig. 2). The inlet velocity is assumed to be horizontal with a 

parabolic distribution, and the value of the horizontal velocity component is computed as (Kovarik et al., 

2014)  

 

 u = 24(y − 0.5)(1 − y)                (15) 

 

 The maximum inflow velocity is umax = 1.5, and the average inflow velocity is ua=1. The Reynolds 

number can then be defined as 

 

 Re =
uaH

ν
                   (16) 

 

 Where H is the height of the channel (see Fig. 2). 

 

 
 

Fig. 2 Backward-facing step, geometry and boundary conditions. 

 

 The whole domain is covered by two uniform nodal models. The first consists of 121 points in the x 

direction and 21 in the y direction for 0 ≤ x ≤12; the second consists of 180×11 points for 12 ≤ x ≤ 30. The 

initial values of all quantities are set to zero.  

 

The steady solution is again reached when the tolerance between two consecutive time steps (Eq.(13)) 

is lower than a prescribed tolerance value ε. Fig. 3 shows streamlines and pressure contours for Re=800, 

and Fig. 4 compares the horizontal velocity components in two vertical profiles (x = 3 and x = 7), with 

values presented in Erturk (2008). 
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Fig. 3 Streamlines and pressure contours for Re = 800. 

 

   

 
 

Fig. 4 Comparison of the horizontal velocities in profiles x = 3 and x = 7 for Re = 800. 

 

 The figure shows that at low Reynolds numbers our computed results agree well with both the other 

results. As the Reynolds number increases, the agreement with the experimental results becomes only 

moderate, because the flow in the experiments becomes three-dimensional, preventing direct comparison 

between the experimental and the 2D numerical results (Armaly et al., 1983).  

 

5. Conclusion 
 In this article, a numerical algorithm using the Meshless Local Petrov-Galerkin (MLPG) method for 

the incompressible Navier-Stokes equations is demonstrated. To deal with convection term, the fractional 

step method was adopted and the set of recurrent equations was derived for time stepping procedure. The 

ability of the MLPG code to solve fluid dynamics problems was presented by solving backward-facing 

step flow problem with reasonable accuracy when compared to exact solution. 
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