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Abstract- Membrane-based pressure driven processes are used in an increasing number of applications. To 

properly design membrane applications, it is necessary to have a good estimate of membrane properties. To 

characterize membrane permeation properties, the time-lag method is commonly used. A study has been undertaken 

to gain a deeper understanding on the accuracy of the time-lag method under realistic boundary conditions using 

numerical methods. Numerical simulations offer the opportunity to obtain a solution to the Fick’s diffusion equation 

under various boundary conditions and for nonlinear sorption behaviour for which analytical solutions are difficult 

or impossible to obtain. This paper is mainly concerned with the selection of the optimal finite difference scheme for 

solving the Fick’s diffusion equation that leads to the accurate determination of the membrane time lag. Pressure 

responses in the upstream and downstream reservoirs at both membrane interfaces are determined from the 

concentration gradients. The concentration gradient at the upstream side of the membrane is initially very steep and 

to accurately extract membrane properties, it is important to predict it very accurately. Simulation results for the 

prediction of concentration profiles and gradients at both interfaces are compared with known benchmark analytical 

equations to assess the precision of numerous numerical schemes where the effect of mesh size and time step is 

quantified. Results show that a variable mesh size is required to predict accurately the concentration gradient at the 

upstream interface. The choice of a variable mesh size scheme is important as a compromise must be struck between 

the smallest mesh size and the time step as it greatly impacts on the computation time. Results also showed that both 

the implicit and explicit finite difference schemes gave very similar results.   
 

Keywords: numerical simulation, membrane characterization, permeation, finite differences, time lag, 

upstream pressure decay, variable mesh scheme 

 

Nomenclature 
A Cross sectional membrane area, m

2
 

C Permeating gas concentration, mol/m
3
 

D Diffusion coefficient, m
2
/s 

G
A
 Analytical concentration gradient, 

mol/(m·m
3
) 

AG
 Steady-state analytical concentration 

gradient, mol/(m·m
3
) 

Gu Upstream concentration gradient, 

mol/(m·m
3
) 

Gd Downstream concentration gradient, 

mol/(m·m
3
) 

J Flux, mol/(m
2
·s) 

L Membrane thickness, m 

n Number of time increments 

N Total number of mesh points for both 

uniform and variable mesh schemes 

N0 Number of original uniform mesh sizes 

before conversion to variable mesh 

N1 Number of uniform mesh sizes converted to 

variable mesh sizes 

N2 Number of converted variable mesh sizes 

from uniform mesh sizes 

p
A
 Analytical pressure change, kPa 

p0 Constant pressure in the upstream chamber, 

kPa 

pu Upstream pressure, kPa 

pd Downstream pressure, kPa 

P Permeability, mol·m/(m
2
·Pa·s) 

R Universal gas constant, J/(K·mol) 

S Solubility, mol/(m
3
 Pa) 

t Simulation time, s 

T Absolute temperature, K 

Vu Upstream volume, m
3
 

Vd Downstream volume, m
3
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x Permeation distance, m 

ɛ  Error between analytical results and 

numerical results 

t Simulation time step, s 

x1 Grid size upstream of the grid point located 

at x, m 

x2 Grid size downstream of the grid point 

located at x, m 

xs     First and smallest mesh size for both the 

variable and uniform mesh schemes. 

pu Upstream pressure decrease, kPa 

pd Downstream pressure increase, kPa 

A
 Analytical time lag, s 

u Upstream time lag, s 

d Downstream time lag, s 

 

 

1. Introduction 
 Membrane-based pressure driven processes are used in an increasing number of applications, and are 

the subject of intensive research and development (Bernardo and Clarizia, 2013). To characterize simple 

permeation processes as well as more complex processes involving diffusion with simultaneous 

adsorption, the time-lag method initially proposed by Daynes (1920) and then modified by Barrer (1939) 

is the method that is currently being used by most researchers. The determination of the time lag allows 

finding the membrane diffusion coefficient for a target solute. The downstream time lag is based on the 

downstream pressure increase, while the upstream time lag is based on the detection of the pressure decay 

in the upstream chamber. Our research group has undertaken an experimental research program to devise 

new and improved methods to rapidly and accurately determine membrane properties. To complement the 

experimental program, numerical simulations are also performed to gain a deeper understanding on the 

flow of molecules across the membrane. Numerical simulations offer the opportunity to obtain solutions 

for the Fick’s diffusion equation under various boundary conditions at which analytical solutions are 

difficult or impossible to obtain, in addition to consider diffusion within membranes that is characterized 

with nonlinear sorption behaviours.  

 This paper is mainly concerned with the selection of the optimal finite difference scheme for solving 

the Fick’s diffusion equation that leads to the accurate determination of the upstream and downstream 

membrane time lags. For the experimental determination of the time lag, the system usually consists of a 

thin membrane separated by two fixed-volume chambers, which are initially maintained under high 

vacuum (see Figs. 1 and 2). The experiment starts when the upstream chamber is rapidly filled with a high 

pressure gas. The gas then progressively permeates through the membrane leading to a decrease in the 

pressure in the upstream chamber and an increase in the pressure of the downstream chamber. Based on 

the plots of the upstream and downstream pressure differences as a function of time, it is possible to 

determine the upstream and downstream time lags, respectively. The time lags are obtained by evaluating 

the intercept of the linear portion of the pressure difference curves with the time axis as schematically 

shown in Fig. 3. The time lag θ is directly proportional to the reciprocal of the membrane diffusion 

coefficient D (Daynes, 1920). Eqs. (1) and (2) give, respectively, the relationships that exist between the 

upstream and downstream time lags with the membrane diffusion coefficient and thickness. 
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Fig. 1. Schematic diagram of a typical membrane testing module. 

 
 

Fig. 2. Schematic model of the membrane-based pressure driven processes in a constant volume (CV) system. At 

time t = 0
-
, the system is maintained under high vacuum and at t = 0

+ 
the system is suddenly exposed to high 

pressure gas that rapidly fills the upstream chamber. Vu and Vd are the upstream and downstream volumes, pu(t) and 

pd(t) are the upstream and downstream pressure changes as a function of time, C(x, t) is the concentration profile 

within the membrane as a function of permeation distance x and time t and D, S and P are the membrane properties: 

diffusion coefficient, solubility and permeability, respectively. 
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 Where L is the membrane thickness, D is the diffusion coefficient, and u and d are the upstream 

and downstream time lags, respectively. 

 

 
 

Fig. 3. Schematic representation of the time lag determination from the upstream and downstream pressure 

difference curves.  
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 The change in gas pressure in both chambers as a function of time is determined from the 

concentration gradients at their respective gas-membrane interfaces. Because the upstream interface of the 

membrane is subjected to a step change in the gas pressure, the concentration gradient at the upstream 

side of the membrane is initially very steep compared to the concentration gradient observed at the 

downstream side of the membrane. To accurately extract membrane properties from the upstream 

pressure difference curve, it is important to predict as accurately as possible the concentration gradient at 

that interface. A numerical model was developed to simulate the gas permeation process and predict the 

concentration profile as a function of time. The derivative of the concentration profile at the interfaces 

leads to the calculation of the interface gradients, which in turn allows calculating the pressure change in 

the upstream and downstream chambers of known volumes as a function of time. The time lag can then 

be obtained. In this investigation, the finite difference method (FDM) is used to discretize the one-

dimensional Fick’s second law of diffusion over the membrane into a number of finite thin slices and to 

solve numerically the partial differential equation to obtain the concentration profile of the gas permeating 

within the membrane.  

 In this paper, to support the experimental and numerical research program undertaken to determine 

the conditions under which the evaluation of the upstream and downstream time lags leads to better 

accuracy, numerical permeation experiments are performed to assess this precision. For quantifying this 

precision, simulation results for the prediction of concentration profiles, the concentration gradients at the 

two gas-membrane interfaces, the upstream and downstream pressure profiles and the time lag as a 

function of time were compared with benchmark analytical solutions. The paper is divided as follows. 

The benchmark analytical solutions for conventional boundary conditions are first presented, followed by 

a description of the various numerical schemes that have been investigated. Results of the various 

numerical studies are presented and discussed before concluding. 
 

2. Analytical Solutions 
 A series of benchmark analytical solutions for the concentration profiles, the gradients at both 

interfaces, and the changes in pressures in the upstream and downstream volumes have been used to 

compare the different numerical schemes. These analytical solutions are presented in this section. 

 For the simplest case, the gas permeation via diffusion through the membrane follows Fick’s second 

law of diffusion which allows representing the concentration C(x, t) of the permeating species as a 

function of time (t) and position (x) via Eq. (3) where the diffusion coefficient (D) of the permeating gas 

within the membrane is assumed to be constant. 

   

 
2

2

C C
D

t x

 


 
                  (3) 

 

 For deriving one of the benchmark solutions, the two chambers separating the membranes are 

initially under high vacuum such that the initial concentration throughout the membrane is equal to zero. 

The experiment starts when the upstream chamber is rapidly filled with the permeating species to reach a 

relatively high pressure which is maintained constant during the experiment. The permeating gas 

molecules start diffusing through the membrane and eventually emerge into the downstream chamber. 

 The amount of the gas that accumulates in the downstream chamber is considered to be negligible so 

that the concentration of the gas at the permeate interface of the membrane is assumed to be zero during 

the experiment. Based on these assumptions, the initial condition (IC) and the two boundary conditions 

(BC1 and BC2) used to derive the analytical solution are given in Eq. (4). 
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 Where C is the concentration of the permeating gas, p0 is the constant pressure in the upstream 

chamber, S is the solubility of the membrane and L is the thickness of the membrane. The two boundary 

conditions are ideal boundary conditions for which it is possible to derive an analytical solution. The 

solution of Eq. (3) subjected to the initial and ideal boundary conditions of Eq. (4) can be obtained using 

the method of separation of variables and is given in Eq. (5) (Rutherford and Do, 1997). This equation 

gives the concentration profile as a function of time t and permeation distance x. 
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 To determine the concentration gradients at both interfaces, the Fick’s first law can be used where, as 

expressed by Eq. (6), the flux J is the negative of the product of the diffusivity and the gradient. 
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 The benchmark analytical solutions for the gas fluxes at the upstream side (x = 0) and downstream 

side (x = L) of the membrane are evaluated using Eqs. (7) - (8), respectively: 
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 To develop the analytical solutions for the concentration profile (Eq. (5)) and the fluxes at the 

interfaces (Eqs. (7) and (8)), it was necessary to use the boundary conditions given in Eq. (4). To 

determine the time lag, a pressure difference needs to be recorded in the upstream and/or downstream 

chambers such that the two boundary conditions of Eq. (4) are not perfectly satisfied. However, the 

pressure changes in both chambers are relative small such that the deviations from the theoretical 

boundary conditions are relatively small and do not have a major impact on the determination of the time 

lag. As a result, the mass flux at the two interfaces are calculated with the prevalence of the two boundary 

conditions of Eq. (4) even if the two gradients at the interfaces would be in reality slightly different than 

the ones calculated with the assumptions of Eq. (4). 

 The pressures in the upstream and downstream chambers can be calculated by performing a simple 

mass balance in each chamber while integrating Eqs. (7) and (8) with time. The following expressions 

were derived for the upstream and downstream pressures as a function of time: 
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 where p(0,t) and p(L,t) are the respective pressure at the upstream and downstream interfaces, pu and 

pd are the pressure decrease at the upstream interface and pressure increase at the downstream interface, A 

is the cross sectional area of the membrane and R is the gas constant.   

 At long permeation time (t·D/L
2
 > 1), the transient terms in Eqs. (10) and (12) become negligible 

and these equations reduce to the following two linear equations: 
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 The intercept of the linear portion of the pressure difference curves with the time axis (see Fig. 3), 

obtained after a long permeation time, gives the upstream and downstream time lags. The time lags, 

evaluated from the pressure changes on both sides of the membrane, are directly proportional to the 

reciprocal of the membrane diffusion coefficient, as shown in Eqs. (1) and (2). 

 

3. Numerical Solutions  
 

3. 1. Numerical solutions 
 The benchmark analytical solutions derived in the previous section under ideal boundary conditions 

can be used to evaluate the accuracy of the numerical solutions for the concentration profiles, the 

gradients at the interfaces, the changes in the upstream and downstream pressures, and the time lag. Eq. 

(3), subject to the initial and boundary conditions of Eq. (4), was solved numerically using finite 

differences (Carnahan et al., 1969). The continuous domain of the membrane was discretized into a 

number of grid points and the Fick’s second law of diffusion was approximated by finite differences for 

each of these grid points. For each point of the grid, it is therefore possible to write an algebraic equation 

to approximate the differential equation using Taylor’s series expansion with respect to a change in time, 

t. For all grid points in the solution domain, Eq. (3) can be approximated as follows. 
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 Where x1 and x2 are the grid sizes upstream and downstream of the grid point located at x, 

respectively. For a uniform grid size, x1 would be equal to x2. The concentration profile can be 

obtained numerically via Eqs. (16) and (17) respectively, using an explicit or implicit numerical scheme. 

For the explicit scheme, the concentration can be calculated directly at time t+t at every grid point 

whereas for the implicit scheme the concentration profile at time t+t is obtained by solving a tridiagonal 

matrix (Carnahan et al., 1969). For the explicit scheme, the dimensionless time 2( / )sD t x   must be 

smaller than 0.5 to ensure numerical stability. xs is the first and smallest mesh size for both the variable 

and uniform mesh schemes. The implicit scheme is unconditional stable but in this investigation we have 

used the same criterion to select the integration time step. 

 

 
   

2 1

2 1 2 1 1 2

2

t t t t

x x x x x xt t t

x x

C C C C
C C D t

x x x x x x

 
  

    
       

        (16) 

 

 
   1 2

1 1 2 1 2 2 1 2

2 2 2
1 + t t t t t t t

x x x x x x

D t D t D t
C C C C

x x x x x x x x

  

 

      
                      

  (17) 

 

 Eqs. (16) and (17) are valid for all interior grid points. To satisfy the two boundary conditions, Eqs. 

(18) (a) and (b) are used for the first and last grid points, respectively. 
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 The concentration gradients at both surfaces of the membranes are calculated from the concentration 

profile using Eqs. (19) and (20). 
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 Where N is the number of grid points in the solution domain. The pressure differences are calculated 

from the gradient on both sides of the membrane via Eqs. (21) and (22) where T is the absolute 

temperature, Gu and Gd are the upstream and downstream concentration gradients, Vu and Vd are the 

upstream and downstream volumes of the chambers and n is the number of time increments t for which 

the simulation was run. 
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3. 2. Numerical schemes for variable mesh sizes 
 Since the gradient at upstream interface of the membrane is very steep, especially at a short 

permeation time, it is desired to resort to a relatively small mesh size at this interface to predict very 

accurately the concentration gradient. In this investigation, both uniform and variable mesh sizes were 

used. For the scheme with variable mesh size, a number of uniform grid sizes at the two membrane 

boundaries were transformed into a number of progressively increasing mesh sizes starting with a very 

small mesh size at the surface. Fig. 4 shows one of the variable mesh schemes that were used in this study 

where 3 uniform mesh sizes were converted into 10 variable mesh sizes. 

 To obtain an exponentially increasing mesh size, a multiplication factor was defined for each variable 

mesh scheme such that the smallest mesh point at the boundary is progressively increased until the 

uniform central mesh size is obtained. The uniform mesh size is then used for all the other interior points. 

For the variable mesh scheme illustrated in Fig. 4, the factor to convert the 3 uniform mesh sizes into 10 

variables mesh is 1.311129915. The size of the first mesh is calculated using Eq. (23) where the uniform 

mesh size (=L/(N0 - 1)) is divided by the factor to the 10
th
 power. N0 is the number of grid points used with 

a uniform mesh size. 
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0( 1)
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 The sizes of the subsequent variable meshes are calculated using Eqs. (24) and (25) for the upstream 

and downstream boundaries, respectively. 
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 Three different factors were tested in this investigation and their values are given in Table. 1. In Eqs. 

(23) and (25), N0 represents the original number of mesh points in a uniform grid. N1 represents the 

number of uniform mesh sizes that were converted into N2 variable mesh sizes. The number of grid points 

will therefore increase from N0 to N0+2(N2 - N1) when a variable grid scheme is used. For both mesh 

schemes, the total number of mesh points will be denoted N. 

 

 
 

Fig. 4. Schematic illustration of the transformation of a uniform mesh into a variable mesh with Factor 2. 
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Table. 1. Factors used in variable mesh schemes. N1 is the number of uniform mesh sizes converted into N2 variable 

mesh sizes. 

 

Factor Name Factor 1 Factor 2 Factor 3 

Factor 1.490777275 1.311129915 1.150984101 

N1 2 3 5 

N2 10 10 10 
 

 It is important to reiterate that in practice, the upstream and downstream pressure changes cannot be 

observed under ideal boundary conditions (Eq. (4)) and analytical solutions are only available under these 

ideal conditions. However, in this investigation, these ideal boundary conditions were used to estimate the 

pressure changes that would occur in the upstream and downstream chambers. Since the change in 

pressures for real boundary conditions are usually very small, errors associated with these ideal boundary 

conditions are also very small. The concentration profiles, concentration gradients, pressure differences 

and time lags calculated numerically were compared with the analytical benchmark solutions and average 

percentage errors were calculated to determine the accuracy of various numerical schemes. The numerical 

scheme was then used to gain a deeper understanding of the time lag method. 

 

4. Results and Discussion 
 In this investigation, analytical calculations and numerical simulations were performed under typical 

laboratory operating conditions that were used in actual experimental membrane tests. The typical 

experimental parameters are listed in Table. 2. 

 

 

 

Table. 2. Simulation conditions and membrane system parameters. 

 

Parameter Value Units 

Operating 

conditions 

Temperature T 273.15 K 

Operating pressure p0 689  (100) kPa  (psi) 

Membrane 

properties 

Membrane solubility S 2.74×10
-4

 mol/(m
3 
Pa) 

Membrane diffusivity D 4.52×10
-12

 m
2
/s 

Membrane thickness L 23.5x10
-6

 m 

Membrane area A 0.00125 m
2
 

Membrane system 

parameters 

Upstream volume Vu 9.68×10
-5

 m
3
 

Downstream Volume Vd 9.68×10
-5

 m
3
 

 
4. 1. Concentration profiles 
 Fig. 5 presents the dimensionless average percentage error for the prediction of the concentration 

profiles as a function of the number of mesh points. In Fig. 5, results are presented for both uniform and 

variable (Factor 2) schemes using both explicit and implicit finite difference methods. The dimensionless 

concentration percentage average error ɛ(C), calculated using Eq. (26), corresponds to the average error 

for the prediction of the concentration profiles for all mesh points (N) and m different times. In the present 

investigation, m was equal to 8 which corresponds to the times the numerical and analytical solutions 

were compared which, in this investigation, the comparison was performed each 10 s up to 80 s. 

Superscript A in Eq. (26) designates the evaluation with the analytical solution (Eq. (5)). 
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Fig. 5. Dimensionless percentage average error ɛ(C) of the concentration profiles versus the number of mesh points 

(N). An integration time step of 0.00001 s was used for both explicit and implicit methods and for uniform and 

variable mesh (Factor 2) schemes. 

 

 Results of Fig. 5 clearly show that the concentration profiles are obtained very accurately with an 

average percentage error of less than 0.015% when the number of mesh points is larger than about 25. For 

the prediction of the concentration profiles, both the explicit and implicit finite difference schemes lead to 

very small errors with slightly better predictions obtained with the explicit scheme. In addition, results 

were identical for the uniform and variable mesh size. It can be safely stated that the numerical scheme 

used in this investigation led to very accurate concentration profile predictions and that it can be used 

with confidence for other problems for which analytical solutions do not exist or were not yet derived. 

 

4. 2. Concentration gradients 
 Fig. 6 and Fig. 7 present the plots of the upstream and downstream gradient percentage errors 

evaluated at three different times: 2, 4 and 10 s. The gradients were computed numerically (Eqs. (19) and 

(20)) and compared with the analytical gradients in order to determine the error in its prediction as 

defined by Eqs. (27) and (28) 

 

   100%
A

u u
u A

u

G G
G

G



                 (27) 

   100%
A

d d
d A

G G
G

G





                  (28)  

 

 Where Gu and Gd are the upstream and downstream gradients, respectively. Superscript A designates 

the analytical solution. Since the downstream gradient is initially zero, the steady-state analytical gradient 
AG
 was used in Eq. (28) to avoid dividing by zero or by an extremely small number. 
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Fig. 6. Upstream gradient percentage error ɛ(Gu) versus the number of mesh points (N) with an integration time step 

of 0.00001s and at 2, 4 and 10 s for uniform and variable mesh schemes. 

 

 

 
 

Fig. 7. Downstream gradient percentage error (ɛ(Gd)) versus the number of mesh points (N) with an integration time 

step of 0.00001 s and at 2, 4 and 10 s for uniform and variable mesh schemes. 

 

 

 Results for the upstream gradient (Fig. 6) obtained with a uniform mesh size show a progressively 

decreasing percentage error starting with 10 grid points with relatively high percentage error values of 

4.915%, 2.395% and 0.953% at 2, 4 and 10 s, respectively. As the number of grid points increases, the 

percentage error becomes very small and reaches a value below 0.013% when the number of mesh points 

is 300. The percentage error in the case of the variable mesh size starts with relatively small negative 

values of -0.437%, -0.402% and -0.067% evaluated at 2, 4 and 10 s, respectively. The percentage errors 

then decrease to cross the zero-error line and to assume small positive percentage errors before 

progressively decreasing to very small percentage errors as the number of mesh points is increased. For a 

number of mesh points greater than 100, both uniform and variable mesh schemes lead to very small 
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percentage errors. The insert in Fig. 6 shows that the percentage errors are slightly smaller for a uniform 

mesh size when a higher number of mesh points is used and times larger than 2 s.  

 Results for the downstream gradient (Fig. 7) obtained with a uniform and a variable mesh size show a 

progressively decreasing percentage error as the number of mesh points is increased. For the downstream 

gradient, the percentage error for the variable mesh size is slightly higher than for the uniform mesh size. 

The use of a variable mesh size for the downstream side of the membrane is therefore not required. The 

percentage prediction error for the downstream gradient is extremely low for small simulation times 

because the permeating gas has not yet emerged from the membrane. At higher times, the downstream 

gradient becomes more pronounced and approaches the steady-state analytical gradient ( AG
). For all 

simulation times, the percentage errors were always below 0.02% for a number of mesh points of 150 or 

more.  

 

4. 3. Pressure changes 
 With the instantaneous values of the gradients being calculated at the membrane boundaries, it is 

possible to determine the pressure changes in the upstream and downstream chambers using Eqs. (21) and 

(22). Fig. 8 presents the plots of the upstream pressure decay percentage error at 10 and 80 s. The pressure 

decay is computed with the results of the implicit finite difference method and the pressure decay relative 

percentage error equation is calculated by comparing the analytical and numerical values using Eq. (29). 

 

   100%
A

A

p p
p

p


 
  


               (29) 

 

 Results show that the upstream pressure decay percentage error for both uniform and variable meshes 

decreases steadily with an increase in the number of mesh points. For a given number of mesh points, the 

percentage error is smaller by an order of magnitude when a variable mesh size is used. Since the change 

in pressure is the integration of the permeating gas flux at the interface, any error in the determination of 

the gradient will progressively accumulate as a function of time. The insert of Fig. 6 shows that for a 

sufficiently large number of mesh points, smaller positive percentage prediction errors were observed for 

a uniform mesh point for simulation time greater than 2 s. To better explain the significant difference 

observed between the uniform and variable mesh sizes of Fig. 8, it is important to examine the percentage 

errors of the upstream gradient at very short permeation time where the upstream gradient is the steepest. 

Fig. 9 presents the variation of the percentage error of the upstream gradient for short permeation times. It 

is clear from this graph that the gradient percentage error for the variable mesh size is much smaller at 

short permeation time and decreases by two orders of magnitude in the first 0.5 s. The difference 

observed in Fig. 8 between the uniform and variable mesh sizes is mainly due to the integration 

performed at early time and this difference persists for larger time. This is certainly for the upstream 

pressure change that the use of variable mesh points takes all its importance. 

 The percentage error for the downstream pressure change as a function of the number of mesh points 

is presented in Fig. 10. In general, regardless of the number of mesh points and the permeation time, the 

percentage error for the downstream pressure change is similar for the uniform and variable mesh 

schemes. For the number of mesh points greater than 120 and the shorter permeation time (10 s), the 

pressure change is over predicted by approximately 0.09% and the error decreases with an increase in the 

number of mesh points. On the other hand, at the longer permeation time (80 s) and N = 120, the pressure 

change is under predicted by roughly 0.01%. 
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Fig. 8. Upstream pressure decay percentage error (ɛ(ΔPu))versus the number of mesh points (N) with an integration 

time step of 0.00001 s and at 10 s and 80 s for uniform and variable mesh schemes. 

 

 

 
 

Fig. 9. Upstream gradient percentage error ɛ(ΔGu) versus time (s) at the first 10 seconds with an integration time step 

of 0.000001 s and the number of mesh points (N) of 100, 200 and 300 for uniform and variable mesh schemes. 
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Fig. 10. Modified downstream pressure decay percentage error ɛ(ΔPd) versus the number of mesh points (N) with an 

integration time step of 0.00001 s and at 10 and 80 s for uniform and variable mesh schemes. 

 

4. 4. Time lags 
 Fig. 11 and Fig. 12 show the plots of the upstream and downstream time lag percentage errors as a 

function of the number of mesh points, respectively. The evaluation of the time lag, that is the 

extrapolation of the linear portion of the pressure curve as a function of time, was performed at a 

permeation time of 190 s. The time lag is computed with the implicit finite difference method and the 

percentage time lag prediction error is calculated via Eq. (30). 

 

   100%
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 
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


                  (30) 

 

 Fig. 11 shows that the percentage error of the upstream time lag is strongly influenced by the mesh 

scheme used to solve the problem. For a greater accuracy in the determination of the time lag, it is 

important to use a variable mesh scheme to capture the steep gradient at early permeation times because 

the determination of the time lag relies strongly on total upstream pressure change which results from the 

integration of the permeation flux at the upstream interface. Variable mesh schemes V1, V2 and V3 

correspond to variable mesh scheme using Factors 1, 2 and 3, respectively. It appears that the variable 

mesh size with Factors 1 or 2 lead to very good results. Simulations presented in Figure 9 with Factor 2 

for very short permeation times, were also performed for Factors 1 and 3. Results (not shown) were 

nearly identical for Factors 1 and 2 but significantly better that those for Factor 3 and uniform mesh. 

Since the smallest mesh size for Factor 1 is significantly smaller than for Factor 2, the time step needs 

also to be smaller which leads to higher computation time. Factor 2 was therefore used for most results 

presented in this investigation.  

 For the downstream time lag, results of Fig. 12 show that the percentage time lag prediction error is a 

function of the number of mesh points, but unlike the upstream time lag, the uniform mesh size is slightly 

better than the variable mesh size, but the difference is rather insignificant. The reason for the 

insignificant difference is the smooth concentration profile for the downstream interface. The accuracy of 

the time lag stabilizes to a percentage error of less than 0.015% for a number of mesh points greater than 

150. 
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Fig. 11. Upstream time lag prediction error (ɛ(θu)) versus the number of mesh points (N) with an integration time 

step of 0.00001 s for uniform and variable mesh (with different factors) schemes. The time lag was evaluated at 190 

s. 

 

 

 
 

Fig. 12. Downstream time lag error ɛ(θd) versus the number of mesh points (N) with an integration time step of 

0.00001 s for uniform and variable mesh (with different factors) schemes. The time lag was evaluated at 190 s. 

 
4. 5. Computation time 
 Fig. 13 presents the magnitude of dimensionless percentage average error ɛ(C) for the concentration 

profile within the membrane as a function of the integration time step to study the accuracy of the 

numerical method with respect to the time step. Results clearly show that for the range of time steps that 

was investigated, the percentage error is very small in all cases. However, for a greater accuracy, a time 

step of 0.00005 s could be chosen as an optimal value and a compromise between accuracy and 

computation. Indeed, using a smaller time step would only lead to greater computation time and not to a 

greater accuracy.  
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Fig. 13. The average percentage error ɛ(C) of the concentration profiles versus the size of the integration time step 

with a uniform mesh scheme and a number of mesh points N = 100 and the corresponding computation time for each 

experiment. 

 

 Fig. 14 presents an analysis to determine the computation time as a function of the number of mesh 

points. The computation time increases linearly with the number of mesh points. Comparing the two 

numerical methods, the implicit method with the same time step required a larger computation time than 

the explicit method because it is required to solve at each time step the resulting tridiagonal matrix. Since 

the explicit finite difference led most of the time to a slightly better accuracy and it requires less 

computation, it is recommended to use explicit finite differences to solve the type of problems 

encountered in this investigation. 

 

 

 
 

Fig. 14. Computation times for different mesh points and for explicit and explicit schemes with uniform mesh size 

and simulation time of 80 s. Computer and processor used are Dell OptiPlex 780 and Intel Core 2 Duo E8400 (3.00 

GHz), respectively. 
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5. Conclusion 
 Results have shown that the concentration profiles can be solved very accurately regardless of the 

finite difference scheme used to solve the Fick’s second law of diffusion. The concentration gradients 

obtained with a uniform mesh scheme can predict the downstream time lag with a very good accuracy. 

However, to predict the upstream time lag, using a variable mesh size to have a small mesh size at the 

interface is required. Results have shown that the gradient percentage errors obtained with a variable 

mesh size are significantly smaller that the gradients percentage errors obtained with a uniform mesh size, 

especially at earlier permeation time when the gradient is very steep. Since the pressure change is the 

time-integration of the flux at the interface, the prediction errors on the gradients has a major impact on 

the upstream pressure difference curve from which the time lag is evaluated. Results have shown that a 

variable mesh scheme where the first three uniform mesh sizes are transformed into 10 variable meshes 

(Factor 2) is a good compromise between accuracy and computation time.  

 This investigation has also allowed showing that an explicit or implicit finite difference scheme does 

not affect the results. Since the explicit scheme often gave slightly better results, it is recommended to use 

an explicit scheme because less computation is required. It is concluded that the numerical scheme used 

in this investigation can be used with confidence to solve problems with various boundary conditions and 

for systems where nonlinear diffusive behaviour is observed. 
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