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Abstract - A series of experiments were performed to obtain the drag force and rise characteristics of oblate ellipsoidal bubbles 

(OEB) in tap water at room temperature. The experiment utilized a 1.219m tall Plexiglas column with square cross section of 15.24cm 

sides designed and constructed for this purpose. Photographs captured the bubbles as they rose and grew vertically in the water column, 

and were analysed to determine the bubble radius. The drag force and velocity of rise were determined indirectly. An equation 

(CD=2.667/Fr) was derived for the drag coefficient of the OEB where Fr is the Froude number. The merit of this work is in the 

capability of the bubble’s semi-major and semi-minor axes measurement being used to determine the drag coefficient and mean rising 

velocity of bubbles. Results were compared favourably with the current and published theoretical results. 
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1. Introduction 
 There are three main stages of bubble shape development during rise in an extended liquid: spherical, ellipsoidal, 

and spherical-cap (SCB). The main industrial applications of bubble dynamics are found in nuclear power generation, 

chemical industry, oil transportation, heating, ventilation, and air conditioning, and mineral processing. 

         Moore [1] analysed the motion of the OEB and obtained an equation for the variation of the drag coefficient with 

respect to the aspect ratio of the OEB and Reynolds number (Re=Udeq/ 𝑣) where U is the bubble velocity, deq is the 

equivalent diameter, and 𝑣 is the kinematic viscosity of the liquid. 

         Meiron [2] solved for the distortion of the OEB from its spherical shape as the bubble velocity increased using 

potential flow theory.  He predicted a functional relationship between Weber number(We=ρU^2 d_eq/σ)  where σ  is the 

surface tension and aspect ratio 𝑥  (Fig. 1).  (𝑥 = (major diameter of the cross-section of OEB)/(its minor diameter) = a/b). 

 

 
Fig. 1: Geometry of the OEB (a = c). 
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 On the experimental front, Wu and Gharib [3] concluded from their experiments that the OEB acquired a spiral path 

and became unstable when the bubble equivalent diameter exceeded 0.15cm or the aspect ratio exceeded 1.6. Talaia [4] 

performed a similar experiment to ours but used air-water system and air- glycerol system as an additional testing liquid. 

He acknowledged the viscosity-independence rise of a large bubble but did not make a clear distinction between the OEB 

and the SCB.  The main objective of this experiment was to demonstrate the possibility of measuring the dimensions of the 

OEB to determine its velocity and drag coefficient. In addition, some validation of previous theoretical work was 

attempted. 

 

2. Theory 
 
2.1. The Drag on the OEB 
 The drag coefficient of the OEB is defined as follows  

 

𝐶𝐷 =
𝐷

0.5𝜌𝑈2𝜋(𝑎)2
 (1) 

 
 The drag force D in this equation was obtained by calculating the buoyancy force B acting on the OEB as these two 

forces oppose each other during the rise of the OEB under steady state conditions. Omitting the weight of the bubble, the 

buoyancy force B becomes 

 

𝐵 =
4

3
𝜋(𝑎2𝑏)𝜌𝑔 (2) 

 
 where ρ is the density of the liquid and g is the acceleration due to gravity. Substituting this equation in Eq. (1) and 

B=D, yields the following 

 

𝐶𝐷 =  2.667 (𝐹𝑟)𝑂𝐸𝐵⁄  (3) 

 
 Here  (Fr)OEB =  U2 bg⁄   is the Froude number that compares the inertial forces to the gravitational forces acting on 

the bubble. This equation shows the viscous effects and the presence of surfactants do not play a significant role on the 

drag particularly at high Re numbers. Ellingsen and Risso [11] arrived at the same equation but with different parameters. 

This specific Fr number was chosen to be based on the minor axis “b” because it is considered as the main axis responsible 

for the symmetry of the bubble. This specific Fr number is a more sensitive indicator of the oblateness of the bubble, than 

that based on the equivalent diameter normally employed by other authors. 

 To make the drag coefficient based on the equivalent radius, we used  CD
∗ =

Req

b
CD.   

 
2.2. The Drag on the SCB 
 The following proof is to check the validity of the drag dependence on the Fr number. We analyzed the case of the 

steady rise of the SCB. For Re > 100, the drag coefficient data approaches (CD
∗ )SCB = 2.7, a value obtained by many 

authors (e.g., Wegener and Parlange [6] and Joseph [7]).   

 The volume of the SCB (Fig. 2) is as follows (Kendoush [8]) 

 

𝑉 =  𝜋𝑅𝑠𝑐
3 𝑓1(𝜃𝑚) (4) 

 

 where θm is the wake angle, and 𝑓1(𝜃𝑚) =(
2

3
− 𝑐𝑜𝑠𝜃𝑚 +

1

3
𝑐𝑜𝑠3𝜃𝑚) 

 The wake angle θm of the SCB lies within the range of 45o – 56o (Clift et al. [9] and Landel et al. [10]). Assuming 

that an average wake angle of 52o was considered, Eq. (4) becomes the following 
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Fig. 2: Idealized geometry of the spherical-cap bubble. 

 

𝑉 = 0.129𝜋𝑅𝑠𝑐
3   (5) 

 
 It should be noted that the factor 0.129 in this equation has a range of 0.077- 0.166 based on the choice of θm with 

the average value of θm.  The volume of an equivalent sphere corresponding to the above volume is as follows 

 

𝑉 =
4

3
𝜋𝑅𝑒𝑞

3  (6) 

 
 Equating Eq. (4) and (5) yields,  

 

𝑅𝑒𝑞 = 0.459𝑅𝑠𝑐 (7) 

 
 From the idealized geometry of the SCB (Fig. 3), we have Rc = Rscsinθm 

 This radius is useful in calculating the drag coefficient as it provides for the projected area as shown below 

 

(𝐶𝐷
∗ )𝑆𝐶𝐵 = 𝐶𝐷(𝑅𝑐 𝑅𝑒𝑞⁄ )

2
= 2.96𝐶𝐷 (8) 

 

 where (CD
∗ )SCB is the drag coefficient of the SCB based on equivalent radius, and  Req is the equivalent radius of the 

equivalent spherical volume of the SCB.  Setting the drag force equal to buoyancy, the following is derived 

 

𝐶𝐷 =
𝜋𝑅𝑠𝑐

3 𝑓1(𝜃𝑚)𝜌𝑔

0.5𝜌𝑈2𝜋𝑅𝑐
2

 (9) 

  

 Through further simplification of this equation, 
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𝐶𝐷 =
2

(𝐹𝑟)𝑆𝐶𝐵
 (10) 

  

 Where 

 

(𝐹𝑟)𝑆𝐶𝐵 =
𝑈2

𝑅𝑠𝑐𝑓2(𝜃𝑚)𝑔
 (11) 

 

 And  

 

𝑓2(𝜃𝑚) =
𝑓1(𝜃𝑚)

𝑠𝑖𝑛2𝜃𝑚
 (12) 

 
 Davis and Taylor [15] found in their work that 

 

𝑈 =
2

3
√𝑅𝑠𝑐𝑔 (13) 

 
 Substituting Eq. (13) into Eq. (10) yields  
 

𝐶𝐷 = (9 2⁄ )𝑓2(𝜃𝑚) (14) 

 
 As far as the authors are aware, this new equation for the drag coefficient of the SCB was not reported before. 

Further, the equation needs consideration for future validation work. This is a powerful equation that determines the drag 

from a single measurement of the wake angle. For θm = 52o, this equation becomes 

 

𝐶𝐷 = 0.93 (15) 

  
 Substituting this equation into Eq. (8), yields  

 

(CD
∗ )SCB = 2.77 (16) 

 

 This is the same equation of Wegener and Parlange [6] mentioned earlier. Thus it proved that the new Fr number-

dependent drag coefficients of Eq. (3) have some kind of validity. 

 

3. Apparatus and Procedure 
 The experiments were carried out in a Plexiglas column with a 1.219m height and a cross-section of 15.2x15.2 cm 

(Fig. 3). The column was filled with tap water at 20 oC at atmospheric pressure.  

 Air was introduced into the column via an air compressor, a pressure regulated air receiver, clear vinyl tubing, and a 

manually operated valve. The clear tube was fitted with a glass cane-shaped appendage. The cane-shaped glass ensured the 

bubble would rise in the middle of the tank. A 1cc syringe with an inside needle diameter of 0.1397mm was used to 

introduce air bubbles into the column through a hand controlled valve. Illumination for the experiment was achieved using 

flood lights. A Canon camera 60D, with a Tamron SP 24-70MM F/2.8 Di VC USD lens was used with an image resolution 

of 0.084 x 0.081 mm/pixel (5184 x 3456 effective pixel size). The camera with a 7 fps (frames/second) rate was manually 

moved to ensure the bubble remained in the center of the frame of reference throughout its rise.  Calibration of bubble size 

was accomplished via three solid spherical beads with diameters of 4.978 ±0.001mm, 3.3937±0.0001mm, and 

2.972±0.001mm respectively.  The beads were lowered into the rectangular column with clear fishing string.  The typical 

distance on which the bubble was filmed was (20-30cm). No attempt was made to measure the rising speed of the camera. 
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The camera was moved manually following the rise of the OEB bubble. The following equivalent sphere diameter was 

used in the processing of the data 

𝑑𝑒𝑞 = 2 (
3𝑉

4𝜋
)

1/3

 (17) 

 
 where V is the volume of the OEB  that is given by 

 

𝑉 =
4

3
𝜋(𝑎𝑏𝑐) (18) 

 

 
Fig. 3: The experimental system. 

 

 And a is the semi-major axis, b is the semi-minor axis, and c is the semi depth axis (Fig. 1). The photographs 

produced a two-dimensional image with measurable  a and b axes. The length c was assumed to be equal to the semi-major 

axis; therefore, Eq. (18) becomes  

 

V =  
4

3
π(a2b) (19) 

 

 The OEB bubble velocity was not measured directly, but calculated using the following (Clift et al. [9], p.172) 

 

𝑈 =  [(
2.14𝜎

𝜌𝑑𝑒𝑞
) + 0.505𝑔𝑑𝑒𝑞]

1/2

        (cm/s) (20) 
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 deq in this equation was measured and used to calculate bubble velocity. The water properties were listed in Table 1. 

When the bubble detaches from the needle, its shape is spherical (x=1). As the bubble rises in the column, its shape 

flattens, gradually becomes OEB and its motion becomes oscillatory. 

 Figure 4 shows the flow regime map of the three main bubble shapes (i.e. spherical, ellipsoidal, and spherical cap) as 

given by Clift et al. [9]. Based on calculating Re number, Morton number (M =
gμ4∆ρ

ρ2σ3  ), and Eötvös number (Eo =

∆ρgdeq
2 σ⁄ ), our experimental results fall within the OEB region (filled dots). This region was characterized by Clift et al. 

[9] as a wobbling OEB. Our results were concerned with the mean rising motion and deformation of the bubble. 

 Our range of Re number was 506 - 979, M = 2.569 x 10-11, and the range of Eo was 0.415 – 2.41. 

 Figure 5 shows a typical photograph of the rising OEB in water with the hanging calibration beads. 

 

 
Fig. 4: The flow regime map of bubbles. The filled dots are the present experimental results falling within the ellipsoidal region. The 

origin of this curve is Clift et al. [9].  

 

4. Results and Discussion 
 We followed the experimental evidence of Ellingsen and Risso [11] who proved the influence of surfactant of the tap 

water was negligible on the bubble motion. This, in addition to the derived Eq. (3), motivated us to use Eq. (20) in the 

present calculations of the bubble velocity, despite the fact that the equation was supposed to be applied to a clean system.  

The bubble emerges from the tip of the needle via a hand-regulated valve. It starts rising in spherical form, and then it 

changes to ellipsoidal. 

 Figure 6 A, B, and C show favorable comparisons between the present experimental data (particularly Fig. 6B and 

C) and the theoretical results of Kendoush [5], Moore, [1], and Blanco and Magnuadet [12]. There is a discrepancy at 

x=1.5 of Fig. 6A between theory and experimental data. This can be attributed to the closeness of x=1.5 to bubble 

sphericity. Bubble motion in this region is rectilinear and Ellingsen and Risso [11] indicated that the rectilinear trajectory is 

unstable. However, Kendoush’s [5] theory seems to be closer to the experimental data than both Moore [1] and Blanco and 

Magnuadet [12].   
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 Equation (3) indicates that the drag forces are independent of viscous effects. For sufficiently high Reynolds 

number, the drag coefficient no longer evolves with the Re number.  Figure 7 shows a close agreement between the derived 

derived Eq. (3) and the experimental data. The experimental data are based on the velocity of bubble rise obtained from Eq. 

(20) and the measured bubble dimension b. These velocities and b were used into 𝐹𝑟 =  𝑈2 𝑏𝑔⁄  to get 𝐶𝐷 =
 2.667 (𝐹𝑟)𝑂𝐸𝐵⁄  . 

 

Fig. 5: Typical photograph taken for the rise of the OEB in the water column. 

 

5. Uncertainty Analysis 
 To find the uncertainty in the measured values of deq, we substitute Eq. (19) into (17) to get the following after 

simplification 

 

deq = 2(a2b)1/3  (21) 

 

 Call the uncertainty in deq as  Wdeq
. Uncertainty can be obtained by applying the following equation (Holman [13]) 

 

𝑊𝑑𝑒𝑞
= [(

𝜕𝑑𝑒𝑞

𝜕𝑎
𝑊𝑎)

2

+ (
𝜕𝑑𝑒𝑞

𝜕𝑏
𝑊𝑏)

2

]
1/2

  (22) 

 
 where the uncertainty in measuring a  is  Wa = ± 0.001cm and the uncertainty in measuring b is Wb= ± 0.005 cm. 

Partial differentiating Eq. (21) and substituting in Eq. (22) yielded Wdeq
= ± 0.02 cm or (7.6%-10.8%).   Suneetha and 

Raghuram [14] measured the bubble diameter by using a high speed camera. They reported 18% percentage error in their 

measurements.  The same procedure was done on Eq. (20) and yielded WU= ± 0.432 cm/s or 1.159%.  In addition, using 

Eq. (3) yielded WCD
 = ± 0.03 or 26%.  
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Fig. 6: Comparison between the present experimental results of OEB (solid diamonds), the analytical solutions of Kendoush [5] (solid 

line), Moore [1] (dashed line), and the numerical solution of Blanco and Magnaudet [12] (squares on solid line). (A) x = 1.5, (B) x = 

1.75, and (C) x = 1.95. 

 

 
Fig. 7: The present experimental data of the drag coefficient of the OEB plotted following the derived Eq. (3) (diamonds), compared 

with the theoretical values of Eq. (3) (Solid line). 
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6. Conclusion 
 The present work dealt with experiments on isolated air bubbles of the oblate ellipsoidal shape. Oblate ellipsoidal 

bubble was rising in still water. Photographs of OEB’s were captured and analyzed, and the data were recorded. The 

present experimental results validated the drag Eq. (3). This study showed that the present results validated Kendoush’s [5] 

drag equations of the OEB at high oblateness values. 
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