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Abstract - The effect of steady-state natural convection in undulation wall is presented. The two-dimensional numerical analysis is 

carried out with a method called CVFEM thermally coupled. Incompressible flow formulation written in terms of primitive variables 

,this method uses the interpolation equal order velocity-pressure to the resolution of the Navier-Stokes equations, and is applied to the 

laminar flow problems in natural convection in a vertical channel heated symmetrically, one case is for a single undulation, the other 

case with several undulations. The thermal boundaries conditions used are uniform wall temperature. The profiles of the local and average 

Nusselt number are presented for all the studied cases. FORTRAN code is elaborated in this paper. 
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1. Introduction 
 Undulated vertical channels with natural fluid convection can be found in many engineering applications,    for 

example heat exchangers, heat transfer in electrical circuits and energy storage systems. Considerable experimental work 

and many numerical simulations have been carried on for many years in this field. 

 The first work on natural convection channel flows was attributed to Elenbass and al[1], and the application of the 

finite difference method to solve the equations of the boundary layer by Bodoia and Osterle [2] using conditions to 

symmetrical isothermal limits. A numerical study was conducted by Lee [3] on channels with isothermal or isoflux plates in 

which unheated extensions were placed near the entrance or exit of the channel. 

 In the experimental study, optical techniques are used to obtain both quantitative data (heat flux and     temperature) 

and qualitative (flow visualization) in the calculations, we use a general finite element code called NACHOS and considering 

conditions for uniform wall temperature limits (UWT) and uniform flux (UHF). The experimental and numerical results are 

in good agreement), Said and Krane [4]. the work of Wang and Pepper[5]conducted using an h-adaptive finite element 

algorithm. Results for natural convection within a vertical channel with multiple obstructions are compared with 

experimental values obtained by Cruchaga and Diego [6].Natural convection flow and heat transfer of a viscous fluid 

confined between two vertical parallel plates is analytically investigated taking volumetric heat generation into account, 

work of Sarma  and al [7].The effects of sinusoidal protrusions on steady laminar free convection between vertical walls is 

investigated, Numerical results are presented for various values of the size and spacing of the protrusions. In particular 

optimum values are found which yield maximum wall heat-transfer coefficients Poots and Watson[8]. 

 The objective of the present investigation is to analyze laminar fully developed free convection flow and heat transfer 

in a vertical channel. The equation representing the wall is considered to be mathematically expressible in a suitable 

sinusoidal, and the governing coupled Navier-Stokes and energy equations together with the continuity equation are solved 

by using CVFEM(Control Volume Finite Element) method. As it has been discussed in the previous works of Patankar [9], 

Baliga and Patankar[10], Prakash and Patankar[11], Schneider Raw [12], Masson et al.[13] , Masson and Baliga [14], Saabas 

and Baliga[15], Costa and al.[16], Prakash [17] and Tran and al.[18]. Especially when unstructured meshes are usedAcharya 

and al[19] and Ferziger and Peric[20]. 

 

2. Problem Formulation 
 Studied geometries are vertical channels, of length "L" and width "b" with an aspect ratio Ar = b / L. The walls of the 

channel are maintained at a constant temperature above the ambient environment, creating a flow. 
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 Both studied configurations and boundary conditions are illustrated in the figure. 1, with an aspect ratio Ar = 0.2727. 

Undulation of the right wall undergoes the right wall undergoes periodic function T and ampli = 0.1 is amplitude such that: 

 

     0    Ly   ,  = ampli . sin(2 . / T)x y  

 Case A:   T = 3,         Case B:     T = 0.5 

 
 The analysis is focused on the validation of the obtained results with experimental and numerical data, and the 

comparison between the flow pattern and heat transfer conditions at two different configurations. The flow is considered to 

be stationary, laminar and incompressible Navier-Stokes equation, and the Boussinesq approximation has been applied. 

These equations  Wang and Pepper [5], are expressed in non-dimensional form: 
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 Where U and V are velocity components in the X and Y directions, respectively, P is pressure and θ are temperature. 

And other the settings that appear in the equations are the Rayleigh number, 
  3

 = 
wg T T b

Ra





 and  Prandtl number,

Pr  = 



, equal  0.72.Where  g the magnitude of acceleration due to gravity,   kinematic viscosity,  thermal diffusivity, 

wT  wall temperature and T  ambient temperature. 

 The considered problem is an issue of boundary conditions so we need input and output information. Thus, the 

boundary conditions for equations. (5) - (7) are the following: 
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Fig. 1: Laminar fluid flow in a vertical channel with undulation walls: calculation domain, boundary conditions. 

              

3. Numerical method 
 The discretization of an irregularly shaped calculation domain, using an unstructured grid is shown in figure. 2, the 

computational domain is first discretized as triangular elements of three nodes: 

 

 
Fig. 2: (a) Discretization of the equal order domain CVFEM (b) Detail of discretization domain (internal node) and (c) a boundary 

node. 

 

 The gravity center of each triangular element is then attached to the media of its sides, so as to divide each triangular 

element into three equal areas (whatever the shape of the triangular element). Together, these areas form contiguous sections 

that do not overlap each of the polygonal cross sections of the control volumes being associated with a node of the finite 

element mesh. In co-located CVFEM, all dependent variables of interest U, V, P and T are stored at the same nodes. 

 Simplification of the integration of conservation equations that are discretized by algebraic approximations requires 

interpolation functions to be specified for the diffusion coefficients, density, source terms and the dependent variables. The 

diffusion coefficient must be stored and linearly interpolated for nodal values in each element, Baliga and Patankar[21] , 

Masson and al[13]. 

 In calculating the integrals of algebraic approximations for flow diffusion surface, the gradients of the dependent 

variable in each triangular element are approximated using linear interpolation functions. 

 Regarding the integration of the derived algebraic approximations of advection surface, Baliga and Patankar 

[10],suggest a flow oriented upwind scheme [FLO], built in borrowing ideas from [22] works and Raithby [23]. Masson and  

al.[24]proposed an upwind scheme mass weighted skew (MAW)which overcomes this difficulty. However, this pattern of 

MAW, which is an adaptation of the positive coefficient scheme of Schneider and Raw [12] and Saabas and Baliga,[13]is 

only first order. This CVFEM used in this work. 
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4. Results and Discussion 
 The finite element mesh with volume control, used in the simulations are composed of 8858 triangular elements  which 

has three standard knots (and about 33 elements in the channel width), this mesh was used to validate our Fortran code, 

comparing the numerical results with the experimental and numerical data available in the literature. 

 The results obtained in this work are validated for a smooth channel with Ar = 0.2727,as shown in fig 3, where the 

average Nusselt is plotted versus the Rayleigh number. Experimental measurements of Elenbaas [1] and Said and Karne [4], 

and the numerical results of Bodoia and Osterle [2], Said and Krane [4 ]and Marcela Diego [6] are also included for 

comparison. A very good result agreement can be observed. 

 

 
Fig. 3:   Average Nusselt for different Rayleigh in a smooth channel with an Ar = 0.2727 

 
 A study of undulated channels for Ar = 0.2727 is performed to verify the numerical behaviour in the range of Rayleigh 

from103 to 105.  

 The Rayleigh number studies the isotherms for (case A) and (case B). In such cases the whole heat transfer takes place 

near the inlet region for low value of Rayleigh number. Isotherms for various Rayleigh are shown in Figure 4-5 respectively. 

 

 
 Fig. 4:   Isotherms for different Rayleigh with Ar = 0.2727. 
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Fig. 5:   Isotherms for different Rayleigh with Ar = 0.2727. 

 

 The local Nusselt along the undulated walls is plotted in Figure 6 for (case A) and (case B). We can observe the 

increase in local Nusselt for the Rayleigh number due to the development of large gradients near the wall. When the number 

of undulation increases, we will have large values of local Nusselt, as a result large temperature variations in the field. These 

two effects can also be valued in average Nusselt according to Rayleigh shown in Figure 7. 

 

 
   Fig. 6: Local Nusselt, for different Rayleigh Ar =0.2727. 
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Fig. 7 Nusselt average comparison for different Rayleigh with Ar =0.2727. 

 
4. Conclusion 
 The simulation results are obtained for the natural convection in a vertical ripple channel.It was studied numerically 

by the method of CVFEM (Finite Element Volume Control).The boundary conditions, input / output are based on the 

Neumann boundary conditions of the vertical velocity. The Fortran code has been validated with the numerical and 

experimental in the case of asymmetric heating temperatures. The observed difference is of the order of 2% and less than 

5% (on average Nusselt),for a 0.72 Prandtl number and the effects of different numbers of Rayleigh, and an aspect ratio of 

Ar = 0.2727.Comparing the number of local and average Nusselt. 

 We can conclude that,to increase thermal variation, single undulation channels are used over the channels for several 

undulation. The channel length is proportional to the temperature variation. 

 Possible reasons for these differences are discussed, and further studies should be conducted to improve both 

experimental and numerical approaches and understanding of physical phenomena. 
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