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Abstract - This study presents a numerical simulation of fluid flow and heat transfer due to natural convection within a square 

chamber (Square Cavity), fully filled with a yield stress fluid obeying the Bingham model of behavior. Two dimensional, steady state, 
laminar flow with differentially heated vertical walls (Side walls) and insulated horizontal walls (Top and Bottom) have been 

considered. Plasticity effects on heat mass transfer are investigated for nominal values of Rayleigh number (Ra) in the range of (103 to 

106). We have fixed the Prandtl number (Pr = 10) and Bingham number (Bn = 0.5) to mimic a real incompressible plastic fluid. It is 

found that the average Nusselt number (Nu*) increases with the increasing of Rayleigh number for the both cases Newtonian and non-

Newtonian fluids. However, for the same value of Rayleigh number, the average Nusselt number of Bingham fluid presents a 

diminution comparing with the Newtonian fluid, due to yield stress effects on the convective term. 
 

Keywords: Natural convection, Numerical simulation, Laminar flow, Square cavity, Bingham fluid, Heat and mass 
transfer, Nusselt number. 

 

 

1. Introduction 
 Natural or free convection, i.e. Buoyancy-driven flow caused by temperature [1], occurs frequently in nature and 

technological devices. Even the simplicity of the natural case in square and rectangular cavities have numerous engineering 
applications such as nuclear reactor insulation, room ventilation, solar energy collectors, cooling electronic equipment and 

energy storage. As a consequence of these applications and its geometrical simplicity, a large number of the existing 

literature [2-3-4] is available for such flows especially in the case of Newtonian fluid. One of the most studied cases 
involves two-dimensional square enclosures where the opposing side walls are held isothermally at different temperatures 

while the other walls (Top and Bottom) are insulated to ensure adiabatic condition, we cite for example the work of Turan 

et al. [5-6] who studied free convection in a square enclosure filled with yield stress fluids. Although various shaped heated 

objects configurations totally immersed within the yield stress fluid problems are possible, such as sphere [7], circular and 
elliptical cylinders [8-9], square cylinder [10-11], semi-circular cylinder [12-13] in unconfined power-law and confined 

[14] power-law media. 

 In particular, the coupled-momentum and energy equations have been solved numerically for laminar natural 
convection from differentially heated vertical walls within a square enclosure completely filled with a Bingham plastic 

fluid, over the followings ranges of conditions: Rayleigh number (10
3
 ≤ Ra ≤ 10

6
), Prandtl number (Pr=10), Bingham 

number (Bn=0.5). 

 The paper is concluded by presenting comparisons of velocity components (U and V) on the mid-plane, stream 
function, isothermal layers, Max Nusselt number (Numax) and average Nusselt number (Nu*) of the both cases, Newtonian 

fluid (Bn=0) and Non-Newtonian fluid (Bn=0.5) for different nominal values of Rayleigh number. 
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2. Numerical Method 
  
2.1. Geometry and mesh numbers 

 Fig.1 presents the schematic diagram of the domain witch the simulation will be run. The mesh numbers have been 
set on an analysis of three different non-uniform meshes M1 (41x41), M2 (51x51) and M3 (61x61). Based on a reasonable 

compromise between high accuracy and computational efficiency, M2 was considered efficient for all simulations during 

this study. Fig. 2 presents the mesh numbers using in this work. 
 

 
Fig. 1: Layout of the simulation domain. 

 
Fig. 2: Non-uniform mesh numbers (51x51). 

 
2.2. Boundary conditions 

 The two vertical walls of a square enclosure are kept at different temperatures (TH > TC), whereas the other 
boundaries are considered to be adiabatic in nature. Both velocity components (i.e. u and v) are identically zero on each 

boundary because of the no-slip condition and impenetrability of rigid boundaries. The temperatures for cold and hot 

vertical walls are specified (i.e. T at (x =0) = TH and T at (x = L) = TC). The temperature boundary conditions for the 

horizontal insulated boundaries are given by: ∂T/∂y = 0 at y = 0and y = L. Here 4 governing equations (1 continuity + 2 
momentums + 1 energy) for 4 quantities (u, v, p, T) are solved and thus no further boundary conditions are needed for 

pressure. 

 
2.3. CFD program 

 Fluent, is the commercial CFD software used to solve the coupled conservation equations of mass, momentum and 
energy. In the present work, a second-order central differencing scheme is used for diffusive terms and a second-order up-

wind scheme for the convective terms. SIMPLE algorithm has been used for coupling of pressure and velocity. 

 
2.4. Mathematical formulation 

 For incompressible fluids the conservation equations for mass, momentum and energy under steady-state take the 
following form: 

 

 Mass conservation equation: 

 
∂ui

∂xi
= 0 (1) 

 

 Momentum conservation equations: 
 

ρuj

∂ui

∂xj
= −

∂p

∂xi
+ ρgδi2β(T − Tc) +

∂τij

∂xj
 (2) 
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 Energy conservation equation: 
 

ρujCp
∂T

∂xj
=

∂

∂xj
(k

∂T

∂xj
) (3) 

 
2.5. Validation with the benchmark 

 The simulation results for Newtonian fluids have also been compared with the well-known benchmark data of de 
Vahl Davis [2] for Rayleigh numbers Ra ranging from 10

3
 to 10

6
 and Prandtl number equal to Pr = 0.71. The comparisons 

between the present simulations results with the corresponding benchmark values are very good and entirely consistent 

with our grid-dependency studies. The comparison is summarized in Table 1. 
 

Table 1: Comparison of our simulation results with the benchmark of Vahl Davis [2]. 
 

  Present results Benchmark results [2] 

Ra = 10
3
 Nu* 1.118 1.118 

 Nu max 1.507 1.505 

 U max 3.630 3.649 

 V max 3.677 3.697 

Ra = 10
4
 Nu* 2.246 2.243 

 Nu max 3.534 3.528 

 U max 16.124 16.178 

 V max 19.504 19.617 

Ra = 10
5
 Nu* 4.528 4.519 

 Nu max 7.756 7.717 

 U max 34.686 34.730 

 V max 68.140 68.590 

Ra = 10
6
 Nu* 8.875 8.800 

 Nu max 17.937 17.925 

 U max 64.846 64.630 

 V max 217.276 219.360 

 
2.6. Rheological model 

 A number of empirical models have been proposed for describing the interrelation between shear stress and strain 

rate in yield stress fluids. The most well-known model, and certainly the oldest, is the Bingham model which, in tensorial 

form, can be expressed as: 
 

γ̿̇ = 0,    for    τ ≤ τc (4) 

τ̿ = (μ +
τc

γ̇
) γ̿̇ ,    for   τ > τc (5) 

 

 Where, γ̿̇ the strain tensor, τ̿ the stress tensor, τc the yield stress, μ the so called plastic viscosity of the yielded fluid. 

τ And γ̇ are evaluated based on the second invariants of the stress and shear rate tensors in a pure shear flow, are given by: 
 

τ = [
1

2
τ̿: τ̿]

1
2⁄

 (6) 

γ̇ = [
1

2
γ̿̇: γ̿̇]

1
2⁄

 (7) 
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 The bi-viscosity model [15] has been used to mimic the stress shear-rate characteristics for a Bingham fluid in the 

following manner: 
 

τ̿ = μyγ̿̇ ,    for   γ̇ ≤
τc

μy
 (8) 

τ̿ = τc + μ [γ̿̇ −
τc

μy
],   for   γ̇ >

τc

μy
   (9) 

 
2.7. Dimensionless numbers 

 The Rayleigh number Ra represents the ratio of the strengths of thermal transports due to buoyancy to thermal 

diffusion, which is defined in the present study in the following manner: 
 

Ra =
ρ2Cp g β ∆T L3

μ k
= Gr. Pr (10) 

 

 The Grashof number Gr represents the ratio of the strengths of buoyancy and viscous forces. 
 

Gr =
ρ2 g β ∆T L3

μ2
 (11) 

 

 The Prandtl number Pr depicts the ratio of momentum diffusion to thermal diffusion. 
 

Pr =
μ Cp 

k
 (12) 

 

 The Nusselt number Nu represents the ratio of heat transfer rate by convection to that by conduction in the fluid in 
question. 

 

Nu =
h L 

k
 (13) 

 

 The Bingham number Bn represents the ratio of yield stress to viscous stresses. 
 

Bn =
τc

μ
√

L

g β ∆T
 (14) 

 

3. Results and Discussion 
 It is important to observe the distributions of velocity components (U and V) respectively Fig. 3 and Fig. 4 and the 
dimensionless temperature T* Fig. 5 to explain the variation of Nu along the hot-wall Fig. 6, for the both cases Newtonian 

fluid (A) and Bingham fluid (B). 

 For lowest Rayleigh number Ra=10
3 

the distribution of T* is completely linear and the both vertical and horizontal 
velocities components are essentially negligible due to very weak flow as the effects of buoyancy forces are dominated by 

viscous effects. Under this circumstance, the heat transfer takes place entirely by conduction across the enclosure. 

 With the increasing of Rayleigh number Ra within the enclosure, as a consequence the effects of buoyancy force 

strengthens relative to the viscous force, which in turn augments heat transfer by convection due to stronger buoyancy-
driven flow with higher vertical and horizontal velocity magnitude. This effect is clearly evident from Fig. 3 and Fig. 4, 

which shows that the both respectively horizontal and vertical velocity magnitude does indeed increase with increasing Ra 

for the both cases Newtonian and Bingham fluids. 
 The distribution of non-dimensional temperature becomes increasingly non-linear with the strengthening of 

convective transport for higher values of Ra for both Newtonian and Bingham fluids Fig. 5.The isotherms layers become 
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more curved with increasing Rayleigh number due to a strong convective current within the enclosure Fig. 8 and Fig. 10. 

For the lowest Rayleigh number, contour of static temperature of the case of Bingham fluid are parallel to the side walls 
due to conduction dominated heat transfer Fig. 10. 

 The variation of Nusselt number Nu along the hot-wall is shown in Fig. 6. The results show that Nu increases with 

Ra for both cases Newtonian and Bingham fluids. In addition it can be observed that the values of Nu for Bingham fluids 

are smaller than that obtained in the case of Newtonian fluids with the same nominal Rayleigh number Ra due to the 
plasticity effects which are in according with the properties of the non-Newtonian fluid Fig. 7. 

 

 
(A)                                                                       (B) 

Fig. 3: Variations of U velocity on the surface x=0.5 for Newtonian fluid (A) and Bingham fluid (B). 

 

 
(A)                                                                       (B) 

Fig. 4: Variations of V velocity on the surface y = 0.5 for Newtonian fluid (A) and Bingham fluid (B). 
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(A)                                                                         (B) 

Fig. 5: Variations of dimensionless temperature T* on the surface y = 0.5 for Newtonian fluid (A) and Bingham fluid (B). 

 

 
(A)                                                                         (B) 

Fig. 6: Variations of Nusselt number on the hot wall for Newtonian fluid (A) and Bingham fluid (B). 

 

 
Fig. 7: Comparison of Nusselt number on the hot wall for Newtonian and Bingham fluid for Ra = 106. 
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Fig. 8: Contours of isotherm layers of Newtonian fluid for different Ra = 103; 104; 105 and 106. 
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Fig. 9: Contours of stream function of Newtonian fluid for different Ra = 103; 104; 105 and 106. 
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Fig. 10: Contours of isotherm layers of Bingham fluid for different Ra = 103; 104; 105 and 106. 
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Fig. 11: Contours of stream function of Bingham fluid for different Ra = 103; 104; 105 and 106. 
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4. Conclusion 
 This study presents the heat and mass transfer of steady laminar flow due to natural convection of yield stress fluids 

obeying the Bingham model of behavior in a square cavity with differentially heated vertical walls have been numerically 

studied. 

 The effects of Rayleigh number Ra and Bingham number Bn between two cases Newtonian Bn = 0 and Bingham Bn 
= 0.5 on heat and velocity components (U and V) have been investigated. According to the both profiles of vertical and 

horizontal velocities, it is found that the mean Nusselt number Nu increases with increasing values of Rayleigh number for 

both Newtonian and Bingham fluids. However the Nusselt numbers obtained for Bingham fluid which Bn = 0.5 are smaller 
than those obtained in the case of Newtonian fluid Bn = 0 with the same values of nominal Rayleigh number. 

 Free convection started in the case of Newtonian fluid at lowest Rayleigh number Ra = 10
3
, however in the case of 

Bingham fluid for the same lowest Rayleigh number Ra = 10
3
 the heat transfer took place principally by conduction, it was 

clear that the profiles of isotherms are parallel to vertical wall, and the simulation results show that the value of mean 
Nusselt number settled to unity (i.e. Nu = 1) for Ra = 10

3
 and Bn = 0.5. 

 For future numerical studies in the same field of free convection, we think to investigate the effects of geometrical 

shapes of the enclosure, yield stress (i.e. range of Bn number) and plastic viscosityμ for a deeper understanding of natural 
convection of yield stress fluids within cavities. 
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