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Abstract - In this paper, we examine the entropy generation regarding its magnitude and the limit as time tends to infinity and apply 

the second law of thermodynamics to develop mathematical inequalities with heat conduction in adiabatic spheres. The former shows a 

bounded entropy generation if the heat conduction is initiated by the initial temperature distribution, but unbounded if the heat 

conduction involves a heat source with positive volume average over the sphere. The latter yields various innovative relations that are 

useful both for studying differential equations and for examining accuracy of analytical, numerical and experimental results. The work 

not only builds up the relation between the second law of thermodynamics and mathematical inequalities, but also offers some 

fundamental insights of universe and our future.  
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1. Introduction 
As an important transport process, heat conduction is governed by the first and the second laws of thermodynamics [1-

3]. With the classical Fourier’s law of heat conduction as the constitutive relation of heat flux density, the relation between 

the heat flux density vector and the temperature gradient [1, 4], the first law of thermodynamics yields the classical heat-

conduction equation whose solution provides the temperature field [1, 3]. The application of the Fourier’s law of heat 

conduction will then lead to heat transfer rate and the way to control it [1, 3].  

Applied to heat conduction, the second law of thermodynamics states that: the entropy generation 𝑆gen of a system 

during heat conduction always increases, or, in the limiting case of a reversible process, remains constant, i.e., 𝑑𝑆gen 𝑑𝑡⁄ ≥

0 with t being the time [5, 6]. This requires that 𝑆gen(𝑡2) ≥ 𝑆gen(𝑡1) for all 𝑡2 ≥ 𝑡1. With knowing temperature field from 

the heat-conduction equation, the entropy generation 𝑆gen  becomes available [5, 6]. Applying 𝑑𝑆gen 𝑑𝑡⁄ ≥ 0 and 

𝑆gen(𝑡2) ≥ 𝑆gen(𝑡1) can then yield mathematical inequalities and thus solution features of heat-conduction equations [2].  

Energy is conserved by the first law of thermodynamics [1, 5, 6]. The very essence of entropy is the part of system 

energy that cannot be transformed into useful work [7]. Any entropy generation will then degrade the quality of energy. It 

becomes thus significant and relevant to examine 𝑑𝑆gen 𝑑𝑡⁄  regarding the way to reduce its magnitude and lim𝑡→∞ 𝑆gen 

regarding whether it is bounded or not.  

The present work aims to develop above-mentioned mathematical inequalities and examine 𝑑𝑆gen 𝑑𝑡⁄  and 

lim𝑡→∞ 𝑆gen with heat conduction in three-dimensional sphere. Note that such an analysis is very limited in the literature 

and differs fundamentally from other studies of the second law analysis that mainly aim for improving performance of 

practical processes [8-18]. In Section 2, we make analytical derivation of temperature field, entropy generation and its 

limit, and mathematical inequalities. Our derivation is made for the heat conduction driven by the initial temperature 

distribution, by the internal source and by the both, respectively, with the more details being given for the first case. In 

section 3, we summarize the inequalities developed in Section 2 and the physical implication of the entropy generation and 

its limit obtained in Section 2. We draw some concluding remarks in Section 4. 

 

 

 



 

 

 

 

 

113-2 

2. Temperature Field, Entropy Generation and Mathematical Inequalities 
Consider one dimensional heat conduction along the radial direction in a sphere of radius a with constant material 

properties and specified temperature gradient at the boundary, the second kind or Neumann boundary condition [1]. As the 

contribution of nonhomogeneous boundary condition to the temperature field can be represented by source and initial 

terms [2], we can focus our attention to the following initial-boundary value problem with homogeneous boundary 

conditions in spherical coordinates, shown in Fig. 1, without loss of the generality:  

 

 

{
𝑇t = 𝑎0

2∆𝑇 + 𝑓(𝑟, 𝑡), (0, 𝑎) × (0,+∞)               
𝑇𝑟|𝑟=𝑎 = 0                                                                    

𝑇|𝑡=0 = 𝜑(𝑟).                                                              

 (1) 

 

where t and T are time and temperature, respectively. 𝑎0
2  is the thermal diffusivity. 𝜑(𝑟)  is the initial temperature 

distribution over the sphere. 𝑓(𝑟, 𝑡)  is the rate of heat generation inside the sphere per unit volume and per unit specific 

capacity of the material. The heat generation may be due to nuclear, electrical, chemical, gammy-ray, or other sources that 

may be a function of time and/or position. 

 

 
Fig. 1: Heat conduction in adiabatic spheres along the r-direction(θ = π, ϕ = 2)and spherical coordinate system. 

 

2.1. Heat Conduction Initiated by the Initial Temperature Distribution 
For the heat conduction driven by the initial temperature distribution, 𝑓(𝑟, 𝑡) = 0, and Eq. (1) reduces into 

 

 

{
𝑇t = 𝑎0

2∆𝑇,          
𝑇𝑟|𝑟=𝑎 = 0              

𝑇|𝑡=0 = 𝜑(𝑟).        

          (2) 

 

To obtain the solution of (2), consider 𝑇(𝑟, 𝑡) = 𝑇(𝑡)𝑅(𝑟), applying the superposition principle and initial condition with 

the completeness and the orthogonality of the eigenfunction group and its normal square yield the solution of (2),  

 

 

{
 
 

 
 𝑇φ(𝑟, 𝑡) =∑𝐴𝑙𝑒

−𝜔𝑙
2𝑡

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)          

𝐴𝑙 =
1

𝑀𝑙
∫ 𝜑(𝑟)𝑗0(𝑘𝑙𝑟)𝑟

2𝑑𝑟
𝑎

0

                

 

 

(3) 

where 𝑘𝑙 =
𝜇𝑙
(1/2)

𝑎
⁄ ,𝜔𝑙 = 𝑘𝑙𝑎0, 𝑗0(𝑘𝑙𝑟) is spherical Bessel equation of order 0 and 𝑀𝑙 is the normal square of 𝑗0(𝑘𝑙𝑟). 
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{
 
 

 
 𝑀𝑙 = 

𝜋𝑎3

4𝜇𝑙
𝐽1
2

2(𝜇𝑙), 𝑙 = 1,2,3,…  

𝑀0 =
𝑎3

3
 , 𝑙 = 0                            

   (4) 

 

Entropy analysis and mathematical inequalities  

The total entropy in the sphere is [5, 6], 

 

 
𝑆𝜑(𝑡) = 4𝜋𝜌𝐶𝑉∫ [ln𝑇𝜑(𝑟, 𝑡)] 𝑟

2𝑑𝑟
𝑎

0

= 4𝜋𝜌𝐶𝑉∫ [ln∑𝐴𝑙𝑒
−𝜔𝑙

2𝑡

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)] 𝑟
2𝑑𝑟

𝑎

0

 (5) 

 

Note that 𝑆𝜑(𝑡) is also the total entropy generation for the case of adiabatic boundary conditions with vanished thermal 

entropy flux [5, 6]. Applying Eq. (3), we obtain 

 

 
lim
𝑡→+∞

𝑆𝜑(𝑡) = 4𝜋𝜌𝐶𝑉∫ [ln lim
𝑡→+∞

𝑇𝜑(𝑟, 𝑡)] 𝑟
2𝑑𝑟

𝑎

0

 = 4𝜋𝜌𝐶𝑉∫ ln𝐴0 𝑟
2𝑑𝑟

𝑎

0

 (6) 

 

When 𝑙 = 0, 

 
 

𝑀𝑙 =
𝑎3

3
 ,   𝑗0(0) = 1 (7) 

 

Therefore, 

 

 
A0 =

1

𝑎3

3

∫ 𝜑(𝑟)𝑗0(0)𝑟
2𝑑𝑟

𝑎

0

=
3

𝑎3
∫ 𝜑(𝑟)𝑟2𝑑𝑟
𝑎

0

.   (8) 

 

which is the volume average of the initial temperature distribution 𝜑(𝑟) over the sphere, and 

 
 

lim
𝑡→+∞

𝑆𝜑(𝑡) = 4𝜋𝜌𝐶𝑉∫ [ln
3

𝑎3
∫ 𝜑(𝑟)𝑟2𝑑𝑟
𝑎

0

] 𝑟2𝑑𝑟
𝑎

0

= 
4𝜋𝑎3

3
𝜌𝐶𝑉ln

3

𝑎3
∫ 𝜑(𝑟)𝑟2𝑑𝑟
𝑎

0

.   (9) 

 

which is bounded and equal to system total entropy at a uniform average temperature of the initial temperature distribution 

over the whole sphere. 

Note that, 
 

 𝑑𝑆𝜑(𝑡)

𝑑𝑡
= 4𝜋𝜌𝐶𝑉∫

1

𝑇𝜑(𝑟, 𝑡)

𝜕𝑇𝜑(𝑟, 𝑡)

𝜕𝑡
𝑟2𝑑𝑟

𝑎

0

 = 4𝜋𝜌𝐶𝑉∫
∑ 𝐴𝑙(−𝜔𝑙

2)𝑒−𝜔𝑙
2𝑡∞

𝑙=0 𝑗0(𝑘𝑙𝑟)

∑ 𝐴𝑙𝑒
−𝜔𝑙

2𝑡∞
𝑙=0 𝑗0(𝑘𝑙𝑟)

𝑟2𝑑𝑟
𝑎

0

 (10) 

 

Applying the principle of entropy increase 𝑑𝑆𝜑(𝑡) 𝑑𝑡 ≥ 0⁄ leads to,  

 

 
∫

∑ 𝐴𝑙(−𝜔𝑙
2)𝑒−𝜔𝑙

2𝑡∞
𝑙=0 𝑗0(𝑘𝑙𝑟)

∑ 𝐴𝑙𝑒
−𝜔𝑙

2𝑡∞
𝑙=0 𝑗0(𝑘𝑙𝑟)

𝑟2𝑑𝑟
𝑎

0

≥ 0   (11) 

 

As 𝑑𝑆𝜑(𝑡) 𝑑𝑡 ≥ 0⁄ , we also have 
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 𝑆𝜑(𝑡1) ≤ 𝑆𝜑(𝑡2)        ∀ 0 <  𝑡1 ≤  𝑡2 < +∞   (12) 

 

This yields the  

 

 
∫ [ln∑𝐴𝑙𝑒

−𝜔𝑙
2𝑡1

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)] 𝑟
2𝑑𝑟

𝑎

0

≤ ∫ [ln∑𝐴𝑙𝑒
−𝜔𝑙

2 𝑡2

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)] 𝑟
2𝑑𝑟

𝑎

0

 (13) 

 

Note that  

 

 
𝑆𝜑(0) = 4𝜋𝜌𝐶𝑉∫ [ln𝑇𝜑(𝑟, 0)] 𝑟

2𝑑𝑟
𝑎

0

= 4𝜋𝜌𝐶𝑉∫ [ln𝜑(𝑟)] 𝑟2𝑑𝑟
𝑎

0

,  𝑆𝜑(+∞) =  
4𝜋𝑎3

3
𝜌𝐶𝑉ln

3

𝑎3
∫ 𝜑(𝑟)𝑟2𝑑𝑟
𝑎

0

 (14) 

 

Applying 𝑆𝜑(0) ≤  𝑆𝜑(+∞) leads to  

 

 
  4𝜋𝜌𝐶𝑉∫ [ln𝜑(𝑟)] 𝑟2𝑑𝑟

𝑎

0

 ≤
4𝜋𝑎3

3
𝜌𝐶𝑉ln

3

𝑎3
∫ 𝜑(𝑟)𝑟2𝑑𝑟
𝑎

0

.  
(15) 

 

 

that is 

 

 3

𝑎3
∫ [ln𝜑(𝑟)] 𝑟2𝑑𝑟
𝑎

0

≤ ln
3

𝑎3
∫ 𝜑(𝑟)𝑟2𝑑𝑟
𝑎

0

.   (16) 

 

Eq.(16) is the one-dimensional extension over the sphere of well-known Arithmetic-mean---geometric-mean inequality 

[19, 20] and can be proven mathematically as following as well. 

 

2.2. Heat Conduction Driven by the Internal Source 
For the heat conduction driven exclusively by the internal source, 𝜑(𝑟) = 0 and Eq. (1) reduces 

 

 

{
𝑇t = 𝑎0

2∆𝑇 + 𝑓(𝑟, 𝑡),    
𝑇𝑟|𝑟=𝑎 = 0                       
𝑇|𝑡=0 = 0.                       

 (17) 

 

By the property of 𝛿 function and superposition principle, Eq. (15) thus has the solution of  

 

 

{
 
 

 
 𝑇𝑓(𝑟, 𝑡) = ∫ ∑𝐵𝑙𝑒

−𝜔𝑙
2(𝑡−𝜏)

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)
𝑡

0

𝑑𝜏        

𝐵𝑛𝑙 =
1

𝑀𝑙
∫ 𝑓(𝑟, 𝜏)𝑗0(𝑘𝑙𝑟)𝑟

2𝑑𝑟
𝑎

0

                        

 

                                      

 (18) 

 

where 𝑇𝑓 stands for the temperature for heat conduction driven exclusively by the internal heat source, 𝑘𝑙 =
𝜇𝑙
(1/2)

𝑎
⁄ ,𝜔𝑙 =

𝑘𝑙𝑎0. 

 

Entropy analysis and mathematical inequalities 

The total entropy in the sphere at time instant 𝑡 is, which is also the entropy generation up to time instant 𝑡, 
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𝑆𝑓(𝑡) = 4π𝜌𝐶𝑉∫ [ln𝑇𝑓(𝑟, 𝑡)] 𝑟

2𝑑𝑟
𝑎

0

= 𝑆𝑓(𝑡) = 4π𝜌𝐶𝑉∫ [ln∫ ∑𝐵𝑙𝑒
−𝜔𝑙

2(𝑡−𝜏)

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)
𝑡

0

𝑑𝜏] 𝑟2𝑑𝑟
𝑎

0

 (19) 

 

By applying Eq.(19) 

 

 
lim
𝑡→+∞

𝑆𝑓(𝑡) = 4π𝜌𝐶𝑉∫ [ln lim
𝑡→+∞

(∫ ∑𝐵𝑙𝑒
−𝜔𝑙

2(𝑡−𝜏)

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)
𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

 

 

= 4π𝜌𝐶𝑉∫ [ln lim
𝑡→+∞

(∫
3

𝑎3
∫ 𝑓(𝑟, τ) 𝑟2𝑑𝑟
𝑎

0

𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

       

(20) 

 

Also, 

 

 𝑑𝑆𝑓(𝑡)

𝑑𝑡
= 4𝜋𝜌𝐶𝑉∫

1

𝑇𝑓(𝑟, 𝑡)

𝜕𝑇𝑓(𝑟, 𝑡)

𝜕𝑡
𝑟2𝑑𝑟

𝑎

0

= 4𝜋𝜌𝐶𝑉∫
∫ ∑ 𝐵𝑙(−𝜔𝑙

2)𝑒−𝜔𝑙
2(𝑡−𝜏)∞

𝑙=0 𝑗0(𝑘𝑙𝑟)𝑑𝜏 +
𝑡

0
𝑓(𝑟, 𝑡)

∫ ∑ 𝐵𝑙𝑒
−𝜔𝑙

2(𝑡−𝜏)∞
𝑙=0 𝑗0(𝑘𝑙𝑟)𝑑𝜏

𝑡

0

𝑟2𝑑𝑟
𝑎

0

 (21) 

 

By the second law of thermodynamics, 𝑑𝑆𝑓(𝑡)/𝑑𝑡 ≥ 0. We have thus, by noting that 𝜌𝐶𝑉 > 0,  

 

 

∫
∫ ∑ 𝐵𝑙(−𝜔𝑙

2)𝑒−𝜔𝑙
2(𝑡−𝜏)∞

𝑙=0 𝑗0(𝑘𝑙𝑟)𝑑𝜏 +
𝑡

0
𝑓(𝑟, 𝑡)

∫ ∑ 𝐵𝑙𝑒
−𝜔𝑙

2(𝑡−𝜏)∞
𝑙=0 𝑗0(𝑘𝑙𝑟)𝑑𝜏

𝑡

0

𝑟2𝑑𝑟
𝑎

0

≥ 0 (22) 

 

As 𝑑𝑆𝑓 𝑑𝑡 ≥ 0⁄ , we also have  

 
 𝑆𝑓(𝑡1) ≤ 𝑆𝑓(𝑡2)        ∀ 0 <  𝑡1 ≤  𝑡2 < +∞    (23) 

 

We thus obtain the following inequality: 

 

 
∫ [ln(∫ ∑𝐵𝑙𝑒

−𝜔𝑙
2(𝑡1−𝜏)

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)
𝑡1

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

≤ ∫ [ln(∫ ∑𝐵𝑙𝑒
−𝜔𝑙

2(𝑡2−𝜏)

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)
𝑡2

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

 (24) 

 

Also, 

 

 
𝑆𝑓(0) = 4π𝜌𝐶𝑉∫ [ln lim

𝑡→+0
𝑇𝑓(𝑟, 𝑡)] 𝑟

2𝑑𝑟
𝑎

0

 = −∞      

 

(25) 

 

 
𝑆𝑓(+∞) = 4π𝜌𝐶𝑉∫ [ln lim

𝑡→+∞
(∫

3

𝑎3
∫ 𝑓(𝑟, τ) 𝑟2𝑑𝑟
𝑎

0

𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

 (26) 

 

As 𝑆𝑓(0) ≤ 𝑆𝑓(+∞), we arrive at: 

 

 
4π𝜌𝐶𝑉∫ [ln lim

𝑡→+∞
(∫

3

𝑎3
∫ 𝑓(𝑟, τ) 𝑟2𝑑𝑟
𝑎

0

𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

≥ −∞.    (27) 
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Let’s now examine 𝑆𝑓(+∞) in details. For sufficiently large 𝑡, 

 

 
𝑆𝑓(𝑡 ) = 4π𝜌𝐶𝑉∫ [ln (∫

3

𝑎3
∫ 𝑓(𝑟, τ) 𝑟2𝑑𝑟
𝑎

0

𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

=
4𝜋𝑎3

3
𝜌𝐶𝑉ln (∫

3

𝑎3
∫ 𝑓(𝑟, τ) 𝑟2𝑑𝑟
𝑎

0

𝑡

0

𝑑𝜏) (28) 

 

Consider now the source with a positive volume average over the sphere so that for any time instant τ, there exists a 

positive value 𝜀 such that 

 

 3

𝑎3
∫ 𝑓(𝑟, τ) 𝑟2𝑑𝑟
𝑎

0

≥ 𝜀 > 0    or   
3

𝑎3
∫ 𝑑𝜏
𝑡

0

∫ 𝑓(𝑟, τ) 𝑟2𝑑𝑟
𝑎

0

≥ 𝜀 > 0 ≥ 𝜀𝑡 (29) 

 

Thus we have 

 

 
   𝑆𝑓(𝑡) ≥

4𝜋𝑎3

3
𝜌𝐶𝑉 ln(𝜀𝑡) (30) 

 

As ε > 0, εt can be sufficiently large for sufficiently large 𝑡. Note also that ln 𝑥 increases always with x. We conclude, 

with Eq. (30), 

 

 ∀  𝑀 > 0，∃  𝑡0，when 𝑡0 < 𝑡， 𝑀 < 𝑆𝑓(𝑡) 

 

(31) 

 

that is 

 

 lim
𝑡→+∞

𝑆𝑓(𝑡) = 𝑆𝑓(+∞) = +∞ (32) 

 

2.3. Heat Conduction Driven by the Initial Temperature Distribution and Internal Source 

The temperature field subjected to the effect of both initial temperature distribution and the source term is, by the 

superimposition principle,  

 

 𝑇𝜑𝑓(𝑟, 𝑡) =  𝑇𝜑(𝑟, 𝑡) + 𝑇𝑓(𝑟, 𝑡)   

 

(33) 

 

With Eqs. (3) and (18), we have 

 

 
𝑇𝜑𝑓(𝑟, 𝜃, 𝑡) =∑𝐴𝑙𝑒

−𝜔𝑙
2𝑡

∞

𝑙=0

𝑗0(𝑘𝑙𝑟) + ∫ ∑𝐵𝑙𝑒
−𝜔𝑙

2(𝑡−𝜏)

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)
𝑡

0

𝑑𝜏 (34) 

 

where 𝑘𝑙 =
𝜇𝑙
(
1

2
)

𝑎
⁄
,𝜔𝑙 = 𝑘𝑙𝑎0.  

Entropy analysis and mathematical inequalities 

The total entropy in the sphere at time instant 𝑡 is, which is also the entropy generation up to time instant 𝑡, 
 

 
𝑆𝜑𝑓(𝑡) = 4π𝜌𝐶𝑉∫ [ln(∑𝐴𝑙𝑒

−𝜔𝑙
2𝑡

∞

𝑙=0

𝑗0(𝑘𝑙𝑟) + ∫ ∑𝐵𝑙𝑒
−𝜔𝑙

2(𝑡−𝜏)

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)
𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

.          (35) 

Also, 
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lim
𝑡→+∞

𝑆𝜑𝑓(𝑡) = 4π𝜌𝐶𝑉∫ [ln lim
𝑡→+∞

𝑇𝜑𝑓(𝑟, 𝑡)] 𝑟
2𝑑𝑟

𝑎

0

= 4π𝜌𝐶𝑉∫ [ln(𝐴0 + lim
𝑡→+∞

∫ 𝐵0

𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

 (36) 

 

where 

 

 
𝐴0 =

3

𝑎3
∫ [𝜑(𝑟, 𝜃)] 𝑟2𝑑𝑟
𝑎

0

, 𝐵0 =
3

𝑎3
∫ [𝑓(𝑟, 𝜏)] 𝑟2𝑑𝑟
𝑎

0

 (37) 

 

Note that 

 

 𝑑𝑆𝜑𝑓(𝑡)

𝑑𝑡
= 4π𝜌𝐶𝑉∫ [

1

𝑇𝜑𝑓(𝑟, 𝑡)
(
𝜕𝑇𝜑𝑓(𝑟, 𝑡)

𝜕𝑡
)] 𝑟2𝑑𝑟

𝑎

0

                                      

= 4π𝜌𝐶𝑉∫ [
∑𝐶𝑙(−𝜔𝑙

2) 𝑒−𝜔𝑙
2𝑡 + ∫ ∑𝐷𝑙 (−𝜔𝑙

2)𝑒−𝜔𝑙
2(𝑡−𝜏)𝑡

0
𝑑𝜏 + 𝑓(𝑟, 𝑡)

∑𝐶𝑙 𝑒
−𝜔𝑙

2𝑡 + ∫ ∑𝐷𝑙 𝑒
−𝜔𝑙

2(𝑡−𝜏)𝑡

0
𝑑𝜏

] 𝑟2𝑑𝑟
𝑎

0

 

(38) 

 

where 

 

 
∑𝐶𝑙 =∑𝐴𝑙

∞

𝑙=0

𝑗0(𝑘𝑙𝑟); ∑𝐷𝑙 =∑𝐵𝑙

∞

𝑙=0

𝑗0(𝑘𝑙𝑟) (39) 

 

By the second law of thermodynamics that requires 𝑑𝑆𝜑𝑓(𝑡)/𝑑𝑡 ≥ 0, we have 

 

 

∫ [
∑𝐶𝑙(−𝜔𝑙

2) 𝑒−𝜔𝑙
2𝑡 + ∫ ∑𝐷𝑙 (−𝜔𝑙

2)𝑒−𝜔𝑙
2(𝑡−𝜏)𝑡

0
𝑑𝜏 + 𝑓(𝑟, 𝑡)

∑𝐶𝑙 𝑒
−𝜔𝑙

2𝑡 + ∫ ∑𝐷𝑙 𝑒
−𝜔𝑙

2(𝑡−𝜏)𝑡

0
𝑑𝜏

] 𝑟2𝑑𝑟
𝑎

0

≥ 0 (40) 

 
By applying 

 

 𝑆𝜑𝑓(𝑡1) ≤ 𝑆𝜑𝑓(𝑡2),      ∀ 0 < 𝑡1 ≤  𝑡2 < +∞ (41) 

 

we obtain 

 

 
∫ [ln (∑𝐴𝑙𝑒

−𝜔𝑙
2𝑡1

∞

𝑙=0

𝑗0(𝑘𝑙𝑟) + ∫ ∑𝐵𝑙𝑒
−𝜔𝑙

2(𝑡1−𝜏)

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)
𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

     

≤ ∫ [ln (∑𝐴𝑙𝑒
−𝜔𝑙

2𝑡2

∞

𝑙=0

𝑗0(𝑘𝑙𝑟) + ∫ ∑𝐵𝑙𝑒
−𝜔𝑙

2(𝑡2−𝜏)

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)
𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

   

(42) 

When 𝑡1 = 0, 𝑡2 = +∞,  

 

 
𝑆𝜑𝑓(0) = 4π𝜌𝐶𝑉∫ [ln𝑇𝜑𝑓(𝑟, 0)] 𝑟

2𝑑𝑟
𝑎

0

= 4π𝜌𝐶𝑉∫ [ln𝜑(𝑟)] 𝑟2𝑑𝑟
𝑎

0

 

 

(43) 

 

 
𝑆𝜑𝑓(+∞) = 4π𝜌𝐶𝑉∫ [ln(𝐴0 + lim

𝑡→+∞
∫ 𝐵0

𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

 (44) 

 
By applying 𝑆𝜑𝑓(0) ≤ 𝑆𝜑𝑓(+∞), we thus  have 
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∫ [ln𝜑(𝑟)] 𝑟2𝑑𝑟
𝑎

0

≤ ∫ [ln (𝐴0 + lim
𝑡→+∞

∫ 𝐵0

𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

 (45) 

 

Consider now the source with a positive volume average over the sphere so that for any time instant τ, there exists a 

positive value 𝜀 such that 

 

 3

𝑎3
∫ [𝑓(𝑟, 𝜏)] 𝑟2𝑑𝑟
𝑎

0

≥ 𝜀 > 0 (46) 

 

By using the results in 2.1 and 2.2, we have, for sufficiently large t, 
 

 
𝑆𝜑𝑓(𝑡) =  4π𝜌𝐶𝑉∫ [ln (𝐴0 +∫

3

𝑎3
∫ [𝑓(𝑟, 𝜏)] 𝑟2𝑑𝑟
𝑎

0

𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

≥ 4π𝜌𝐶𝑉∫ [ln(𝐴0 + 𝜀𝑡)] 𝑟
2𝑑𝑟

𝑎

0

 (47) 

 

As ε > 0, εt can be sufficiently large for sufficiently large t. Note also that ln 𝑥 increases always with x. Eq. (47) thus leads 

to 

 

 ∀  𝑀 > 0，∃  𝑡0，when 𝑡0 < 𝑡， 𝑀 < 𝑆𝜑𝑓(𝑡) 

 

(48) 

 

that is 

 

 lim
𝑡→+∞

𝑆𝜑𝑓(𝑡) = 𝑆𝑓(+∞) = +∞ (49) 

 

3. Discussion 
Table 1 summarizes the mathematical inequalities obtained from the second law of thermodynamics with the heat 

conduction in a sphere driven by the initial temperature distribution, the internal source and the both, respectively. They 

are developed by applying the positive semi-definiteness of  temporal derivative of entropy generation, the larger entropy 

generation at time instant 𝑡2 than at 𝑡1for all 𝑡2 ≥ 𝑡1, and the large entropy generation at time infinity than at initial time 

instant of heat conduction as the statements of the second law of thermodynamics convenient to apply. We have also 

proven one of these inequalities [Eq. (16)] mathematically. They form a group of tools that could be useful for examining 

heat conduction equations and their solutions and serve as the benchmarks of confirming solutions from analytical, 

numerical and experimental approaches. 

 
Table 1: Integral inequalities developed in adiabatic spheres. 

 

Heat 

conduction 

2
nd

 law of 

thermodynamics 
Inequalities 

 

By initial 

temperature 

distribution 

 

𝑑𝑆𝜑(𝑡)

𝑑𝑡
≥ 0 ∫

∑ 𝐴𝑙(−𝜔𝑙
2)𝑒−𝜔𝑙

2𝑡∞
𝑙=0 𝑗0(𝑘𝑙𝑟)

∑ 𝐴𝑙𝑒
−𝜔𝑙

2𝑡∞
𝑙=0 𝑗0(𝑘𝑙𝑟)

𝑟2𝑑𝑟
𝑎

0

≥ 0  

𝑆𝜑(𝑡1) ≤ 𝑆𝜑(𝑡2) ∫ [ln∑𝐴𝑙𝑒
−𝜔𝑙

2𝑡1

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)] 𝑟
2𝑑𝑟

𝑎

0

≤ ∫ [ln∑𝐴𝑙𝑒
−𝜔𝑙

2 𝑡2

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)] 𝑟
2𝑑𝑟

𝑎

0

 

𝑆𝜑(0) ≤  𝑆𝜑(+∞) 
3

𝑎3
∫ [ln𝜑(𝑟)] 𝑟2𝑑𝑟
𝑎

0

≤ ln
3

𝑎3
∫ 𝜑(𝑟)𝑟2𝑑𝑟
𝑎

0
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By internal 

source 

𝑑𝑆𝑓(𝑡)

𝑑𝑡
≥ 0 ∫

∫ ∑ 𝐵𝑙(−𝜔𝑙
2)𝑒−𝜔𝑙

2(𝑡−𝜏)∞
𝑙=0 𝑗0(𝑘𝑙𝑟)𝑑𝜏 +

𝑡

0
𝑓(𝑟, 𝑡)

∫ ∑ 𝐵𝑙𝑒
−𝜔𝑙

2(𝑡−𝜏)∞
𝑙=0 𝑗0(𝑘𝑙𝑟)𝑑𝜏

𝑡

0

𝑟2𝑑𝑟
𝑎

0

≥ 0 

𝑆𝑓(𝑡1) ≤ 𝑆𝑓(𝑡2) 

∫ [ln(∫ ∑𝐵𝑙𝑒
−𝜔𝑙

2(𝑡1−𝜏)

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)
𝑡1

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

 

≤ ∫ [ln(∫ ∑𝐵𝑙𝑒
−𝜔𝑙

2(𝑡2−𝜏)

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)
𝑡2

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

 

𝑆𝑓(0) ≤ 𝑆𝑓(∞) 4π𝜌𝐶𝑉∫ [ln lim
𝑡→+∞

(∫
3

𝑎3
∫ 𝑓(𝑟, τ) 𝑟2𝑑𝑟
𝑎

0

𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

≥ −∞ 

By both initial 

temperature 

distribution and 

internal source 

𝑑𝑆𝜑𝑓(𝑡)

𝑑𝑡
≥ 0 ∫ [

∑𝐶𝑙(−𝜔𝑙
2) 𝑒−𝜔𝑙

2𝑡 + ∫ 𝐷𝑙(−𝜔𝑙
2)𝑒−𝜔𝑙

2(𝑡−𝜏)𝑡

0
𝑑𝜏 + 𝑓(𝑟, 𝑡)

∑𝐶𝑙 𝑒
−𝜔𝑙

2𝑡 + ∫ ∑𝐷𝑙 𝑒
−𝜔𝑙

2(𝑡−𝜏)𝑡

0
𝑑𝜏

] 𝑟2𝑑𝑟
𝑎

0

≥ 0 

𝑆𝜑𝑓(𝑡1) ≤ 𝑆𝜑𝑓(𝑡2) 

∫ [ln(∑𝐴𝑙𝑒
−𝜔𝑙

2𝑡1

∞

𝑙=0

𝑗0(𝑘𝑙𝑟) + ∫ ∑𝐵𝑙𝑒
−𝜔𝑙

2(𝑡1−𝜏)

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)
𝑡1

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

     

≤ ∫ [ln(∑𝐴𝑙𝑒
−𝜔𝑙

2𝑡2

∞

𝑙=0

𝑗0(𝑘𝑙𝑟) + ∫ ∑𝐵𝑙𝑒
−𝜔𝑙

2(𝑡2−𝜏)

∞

𝑙=0

𝑗0(𝑘𝑙𝑟)
𝑡2

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

 

𝑆𝜑𝑓(0) ≤ 𝑆𝜑𝑓(∞) ∫ [ln𝜑(𝑟)] 𝑟2𝑑𝑟
𝑎

0

 ≤  ∫ [ln (𝐴0 + lim
𝑡→+∞

∫ 𝐵0

𝑡

0

𝑑𝜏)] 𝑟2𝑑𝑟
𝑎

0

 

 

With the adiabatic boundary, the entropy generation is bounded by its values corresponding to that at volume average 

temperature of its initial temperature distribution [Eq. (9)] with the heat conduction driven by the initial temperature 

distribution, but unbounded [Eqs. (32) and (49)] if the heat conduction involves an internal source with a positive volume 

average over the sphere. As entropy reflects the part of the system energy that cannot be used to do useful work, it is 

critical to limit the use of nuclear, electrical, chemical, gammy-ray, or other sources that could produce positive average 

heat generation in adiabatic systems for the interest of our future. 

 
4. Conclusion 

By its very essence, entropy represents the part of system energy that cannot be transformed into useful work and is 

always generated in all processes. The present work of examining one-dimensional heat-conduction process in an adiabatic 

sphere shows a finite value of entropy generation as the time tends to infinity when the heat conduction is initiated by the 

initial temperature distribution, but infinity when the conduction involves positive heat source even in its average sense. 

Such an analysis is important by noting that our job is to make sure that entropy generation is well-controlled, our future 

depends also on whether the entropy generation is bounded. Therefore, we should constrain ourselves in using nuclear, 

electrical, chemical, gammy-ray, or other sources that could yield positive average heat generation in adiabatic systems.   

By applying the second law of thermodynamics in analyzing heat conduction, we have also obtained mathematical 

inequalities of new or classical nature. This not only builds up the relation between mathematical inequalities and the 

second law of thermodynamics, but also offers an innovative way of studying differential equations. The obtained 

inequalities form a group of benchmarks relations useful for examining accuracy of analytical, numerical and experimental 

findings as well. 
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