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Abstract – Steady laminar natural convection and entropy generation in a porous wavy cavity saturated by a nanofluid with partial 

bottom temperature is studied numerically using the finite element method. An isothermal heater is placed on the bottom horizontal 

wall of the cavity with length ℎ while the wavy vertical walls are maintained at the same constant cold temperature 𝑇𝑐. The remainder 

of the bottom wall and the top wall are kept adiabatic. The boundaries of the domain are assumed to be impermeable and the fluid 

within the cavity is a water-based nanofluid having Cu nanoparticles. The Boussinesq approximation is applicable and the Tiwari and 

Das' nanofluid model is considered. The Forchheimer-Brinkman-extended Darcy model is assumed to hold. The numerical 

computations are obtained for various values of Darcy number, nanoparticle volume fraction and the amplitude of the wave. Based on 

the obtained results, it is found that the strength of the streamlines increases with the increment of the Darcy number. 
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1. Introduction 
Convection heat transfer in porous medium a significant phenomenon in science and engineering systems due to wide 

range of industrial applications such as geothermal reservoirs, waste nuclear processing, matrix heat exchangers, 

optimization of solidification processes of metals and alloys, float glass production, flow and heat transfer in solar ponds, 

air conditioning in rooms, optimization of solidification processes of metals and alloys, dissemination control of chemical 

waste and pollutants, electronic packages, grain storage systems and many others [1]. Natural convection and heat transfer 

in closed cavities with different shapes takes a large part of the heat transfer literature. Square, rectangle, triangle, 

cylindrical, elliptical and spherical geometries have been studied by many researchers. Complex geometries cover different 

types of geometrical configurations, namely wavy walls cavities, concave and convex curved walls cavities, etc. A very 

recent comprehensive literature survey concerning convection heat transfer in wavy porous cavities is given by Shenoy et 

al. [2]. The authors of this book gave an excellent background in the field of convective heat transfer in wavy cavities filled 

with viscous fluids, porous media, and nanofluids. Alsabery et al. [3] numerically studied the Effects of nonuniform 

heating and wall conduction on natural convection heat transfer in a square porous cavity using local thermal  non-

equilibrium (LTNE) model. 

The study of convective heat transfer problems within complex geometries have received a considerable attention in 

the literature due to its wide applications in engineering problems such as; solar collectors, micro-electronic devices, 

electrical and nuclear components, etc. The problem of natural convection heat transfer in a wavy cavity was considered by 

Das and Mahmud [4]. They found that the number of undulations of the wavy wall is clearly affected the heat transfer 

characteristics within the cavity. Rostami [5] numerically studied the unsteady fluid flow and heat transfer problem in a 

cavity with vertical wavy walls and horizontal straight walls. Natural convection in wavy porous cavities under the 

influence of thermal radiation and with the use of thermal non-equilibrium model is studied by Mansour et al. [6]. 
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A nanofluid is defined as a smart fluid with suspended nanoparticles of average sizes below 100 nm in conventional 

heat transfer fluids such as water, oil, and ethylene glycol. A nanofluid as a working medium has been considered by many 

researchers for the simple reason that it has the presence of nanoparticles resulting in higher thermal conductivity of 

medium and the heat transfer becoming enhanced. There has been a surge in research activities concerning natural 

convective heat transfer in nanofluid-saturated porous media. The work of Sun and Pop [7] considered the natural 

convection heat transfer in a triangular cavity heated by a wall heater and filled with a porous medium and saturated with 

different nanofluids types. Chamkha and Ismael [8] studied the conjugate natural convective heat transfer in a porous 

cavity filled with nanofluids and heated by a triangular thick wall. Abu-Nada and Chamkha [9] numerically studied the 

effects of lid-driven wall on mixed convection flow in a lid-driven cavity with a wavy wall filled with a nanofluid. They 

found that heat transfer rate increases with the increment of the volume fraction of nanoparticles for all values of 

Richardson numbers. Recently, the problem of natural convection in a partially heated wavy porous cavity filled with a 

nanofluid under the effects of Brownian diffusion and thermophoresis was investigated by Sheremet et al. [10]. They found 

that the local heat source has an efficient influence of the nanofluid flow and heat transfer rate. Nevertheless, the study of 

natural convection and entropy generation in partially heated porous wavy cavity saturated by a nanofluid. Therefore, the 

aim of this study is to investigate the natural convection heat transfer and entropy generation in a porous wavy cavity 

saturated by a nanofluid with partial bottom temperature. 

 

2. Mathematical Formulation 
The steady two-dimensional natural convection problem in a wavy cavity with a length 𝐿, is illustrated in Fig. 1. An 

isothermal heater is placed on the bottom horizontal wall of the cavity with length ℎ while the wavy vertical walls are 

maintained at the same constant cold temperature 𝑇𝑐. The remainder of the bottom wall and the top wall are kept adiabatic. 

The boundaries of the domain are assumed to be impermeable, the fluid within the cavity is a water-based nanofluid having 

Cu nanoparticles. The Boussinesq approximation is applicable and the Tiwari and Das' with Maxwell-Garnett and 

Brinkman models are used for modelling the nanofluid heat transfer. The Forchheimer-Brinkman-extended Darcy model is 

assumed to hold. The governing equations for natural convection flow using conservation of mass, momentum and energy 

equations can be written in dimensionless form as follows: 

 

 
Fig. 1: Physical model of convection in a wavy porous cavity together with the coordinate system. 
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The governing equations of Navier Stokes equations (1)–(3), the energy equation (4) are transformed into 

dimensionless forms using the following dimensionless variables: 
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The dimensionless boundary conditions of Eqs. (1)-(4) are as follows: 
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The local Nusselt number evaluated at the bottom horizontal wall, which is defined by: 
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Finally, the average Nusselt number evaluated at the bottom horizontal wall of the cavity which is given by: 
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In dimensionless form, local entropy generation can be expressed as: 
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The terms of Eq. 19 can be separated to the following form: 
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where 𝑆𝜃 and 𝑆Ψ are the entropy generation due to heat transfer irreversibility (HTI) and fluid friction irreversibility (FFI), 

respectively. 
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By Integrating Eq. 16 over the domain, the global entropy generation (GEG) for the present two-dimensional study is 

obtained 
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It is appropriate to mention Bejan number in order to determine which one is the dominant, heat transfer or fluid friction 

irreversibility. Bejan number is defined as: 
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When 𝐵𝑒 > 0.5, the HTI is the dominant, while when 𝐵𝑒 < 0.5, the FFI is the dominant. 

The governing dimensionless equations (1)–(4) subject to the boundary conditions (6)–(10) are solved with Galerkin 

weighted residual finite element method [11]. The computational domain is discretised into triangular elements. Triangular 

Lagrange finite elements of different orders are used for each of the flow variables within the computational domain. 

Residuals for each conservation equation are obtained by substituting the approximations into the governing equations. To 

simplify the nonlinear terms in the momentum equations, a Newton-Raphson iteration algorithm was used [11]. 
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3. Results and Discussion 
In this section, we present numerical results for the streamlines, isotherms and isentropic with various values of Darcy 

number (10−6 ≥  𝐷𝑎 ≥ 10−2), nanoparticle volume fraction (0 ≥ 𝜙 ≥ 0.05) and amplitude of the wave (0.05 ≥ 𝐴 ≥
0.3), where the values of Rayleigh number, porosity of the media, number of oscillations and Prandtl number are fixed at 

𝑅𝑎 = 106, 𝜀 = 0.5, 𝑁 = 3 and 𝑃𝑟 = 6.2. The values of the average Nusselt number are calculated for various values of 

𝐷𝑎 and 𝜙. The thermophysical properties of the base fluid (water) and solid Cu phases are tabulated in Table 1. 

 
Table 1: Thermo-physical properties of water and Cu nanoparticles. 

Physical properties Fluid phase (water) Cu 

𝐶𝑝 4179          383 

𝜌            997.1         8954 

𝑘 0.6          429 

𝝁 𝟐𝟏 × 𝟏𝟎−𝟓 𝟓. 𝟒 × 𝟏𝟎−𝟓 

 

Figure 2 illustrates the effects of various Darcy number (𝐷𝑎) on the streamlines, isotherms and isentropic maps for 

𝜙 = 0.03 and 𝐴 = 0.15. At low Darcy number (𝐷𝑎 = 10−5), the flow within the cavity is characterized by two 

streamlines cells at the lower part of the cavity affected by the low velocities that prevail in the cavity. The intensity of the 

isotherm patterns decreases next to the cold wavy walls while in the middle of the cavity the patterns tend to take carved 

lines. The entropy generation in the cavity is primarily due to heat transfer irreversibility and it is almost negligible near 

the upper portion of the cavity due to insignificant heat flow in that region because of the slow velocity. With the 

increasing of 𝐷𝑎 the permeability of the porous medium is increased and thus the fluid flow is intense resulting in 

enhanced convective heat from the hot bottom wall. At this stage, due to stronger fluid flow, the entropy generation is 

clearly higher compared to that for low Darcy number and the upper of the cavity participates in the entropy generation. 

This is because as the fluid circulation is stronger for higher 𝐷𝑎 which leads to a high velocity gradients and therefore a 

more entropy generation due to fluid friction. However, the density of the entropy generation tends to decrease within the 

centre of the cavity due to the fact that most of the energy moves toward the wavy vertical walls. 
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Fig. 2: Variation of the streamlines (left), isotherms (middle), and isentropic (right) evolution by Darcy number (𝐷𝑎) for 𝜙 = 0.03 and 

𝐴 = 0.15. 

 

Figure 3 illustrates the effects of various amplitude of the wave (𝐴) on the streamlines, isotherms and isentropic 

maps for 𝐷𝑎 = 10−3 and 𝜙 = 0.03. It is clearly observed from this figure that the amplitude of the wave has an 

influence on the geometric shape of the flow cell, as well as on the distribution of isotherms and isentropic lines. The 

flow within the cavity appears with two streamlines cells at the lower part of the cavity. The isotherm patterns observe 

with high intensity next the wavy walls of the cavity. The isentropic distribution shows a weak behaviour within the 

cavity, isentropic lines appear with high density within the wavy cavity affected by the lower thermal gradient. The 

intensity of the streamlines increases with the increasing of the amplitude of the wave, and as a result, the strength of 

the flow circulation increases. The intensity of the isotherm patterns decreases next the wavy wall with the increment 

of the amplitude due to the reduction of the gradient of the boundary layer. Increasing the amplitude of the wave up to 

the high values is clearly enhanced the entropy generation due to the strong fluid circulation. 
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Fig. 3: Variation of the streamlines (left), isotherms (middle), and isentropic (right) evolution by amplitude of the wave (𝐴) for 

𝐷𝑎 = 10−3 and 𝜙 = 0.03. 

 

Figure 4(a) shows the effects of various Darcy numbers on the local Nusselt number and along the heated part of the 

bottom wall for 𝜙 = 0.03 and 𝐴 = 0.15. Increasing Darcy tends to increase the gradient of the boundary layer and as a 

result, the local heat transfer enhances. Higher heat transfer enhancement is obtained with higher Darcy number. Figure 

4(b) presents the effects of various nanoparticle volume fraction on the local Nusselt number and along the heated part of 

the bottom wall for 𝐷𝑎 = 10−3 and 𝐴 = 0.15. The local heat transfer increases by the augmentation of nanoparticle 

volume fraction due to the higher thermal conductivity of the nanoparticles. 
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Fig. 4: Variations of local Nusselt numbers interface with 𝑋 for different (a) 𝐷𝑎 and (b) 𝜙 at 𝐴 = 0.15. 

 

Figure 5(a) shows the effects of nanoparticle volume fraction on the average Nusselt number with Darcy number 

for 𝐴 = 0.15. The heat transfer rate is clearly enhanced with increasing nanoparticle volume fraction. The values of 

average Nusselt number denote that the heat transfer rate increases and then decreases and increases after a while with 

the increment of nanoparticle volume fraction. Due to the various flow velocity speeds with different amount of 

nanoparticles. Figure 5(b) illustrates the effects of various values of the nanoparticle volume fraction on Bejan number 

with Darcy number. The average Bejan number tends to decrease as the Darcy number increases which clarify the 

dominance of the irreversibility due to the fluid friction with the high Darcy numbers. 

 

 
Fig. 5: Variation of (a) average Nusselt number and (b) Bejan number (Be) with Da for different 𝜙 at 𝐴 = 0.15. 

 

4. Conclusion 
The present study considered the natural convection and entropy generation in a porous wavy cavity saturated by a 

nanofluid with partial bottom temperature. The governing equations with the boundary conditions are solved numerically 

using the finite element method. The Forchheimer-Brinkman-extended Darcy and Tiwari and Das' nanofluid models are 

assumed to hold. Based on the obtained results, it is found that the strength of the streamlines increases with the increment 

of the Darcy number. The isotherms appear with high density close to the wavy walls. The entropy generation looks very 

strong with high values of the Darcy number. However, the density of the entropy generation tends to decrease within the 

centre of the cavity due to the fact that most of the energy moves toward the wavy vertical walls. The heat transfer rate is 

clearly enhanced with the increasing of the nanoparticle volume fraction and the Darcy number due to the increasing of the 
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thermal conductivity. On the other hand, Bejan number reduces by the increment of the Darcy number when the fluid 

friction irreversibility (FFI) is the dominant. 
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